RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Highly Electrocatalytic Activity of Micro and Nanocomposite Phase Engineering of MoO3−x@K3PW12O40 Decorated on Graphite Felt for High-Performance VRFB

      한글로보기

      https://www.riss.kr/link?id=A109383258

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The catalytic activity of metal cations exchanged with heteropoly acids (HPA) and the selectivity towards precursor composite materials can be tailored by adjusting the reaction mechanism. A structural defect engineering strategy was developed for the metallic phase of O-MoS 2 , doped with a Keggin-type HPA to serve as a double gyroid layer (O-MoS 2 @HPA). This was achieved through thermal oxidation treatment to enable a high surface area by depositing abundant catalytically active sites on the graphite felt. Optimization strategies involving MoO 3− x (MoO 3− x @K 3 PW 12 O 40 ) species have been crafted, anchoring active sites in a spherical nanomorphology through the self-assembly of acid. This development introduces a new approach for enhancing electrocatalysts, aiming for superior performance in VRFB. The electrochemical results show remarkable enhancement in electrocatalytic behavior with abundant heteroatom active sites, promoting oxidation at a high current density of 150 mA/cm 2 , achieving an outstanding 84.62% high energy effi ciency. This result is 14% higher than pristine graphite felt and exhibits extraordinary stability after 1350 cycles, overcoming the sluggish kinetic mechanism that limits redox active materials. This study creates new avenues for the design of hybrid micro/nanostructured materials on cathodes and anodes to achieve excellent performance as electrocatalysts for VRFB.
      번역하기

      The catalytic activity of metal cations exchanged with heteropoly acids (HPA) and the selectivity towards precursor composite materials can be tailored by adjusting the reaction mechanism. A structural defect engineering strategy was developed for the...

      The catalytic activity of metal cations exchanged with heteropoly acids (HPA) and the selectivity towards precursor composite materials can be tailored by adjusting the reaction mechanism. A structural defect engineering strategy was developed for the metallic phase of O-MoS 2 , doped with a Keggin-type HPA to serve as a double gyroid layer (O-MoS 2 @HPA). This was achieved through thermal oxidation treatment to enable a high surface area by depositing abundant catalytically active sites on the graphite felt. Optimization strategies involving MoO 3− x (MoO 3− x @K 3 PW 12 O 40 ) species have been crafted, anchoring active sites in a spherical nanomorphology through the self-assembly of acid. This development introduces a new approach for enhancing electrocatalysts, aiming for superior performance in VRFB. The electrochemical results show remarkable enhancement in electrocatalytic behavior with abundant heteroatom active sites, promoting oxidation at a high current density of 150 mA/cm 2 , achieving an outstanding 84.62% high energy effi ciency. This result is 14% higher than pristine graphite felt and exhibits extraordinary stability after 1350 cycles, overcoming the sluggish kinetic mechanism that limits redox active materials. This study creates new avenues for the design of hybrid micro/nanostructured materials on cathodes and anodes to achieve excellent performance as electrocatalysts for VRFB.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼