RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      채널 상태 정보를 활용한 LoS/NLoS 식별 기반 인간 행동 인식 시스템 = LoS/NLoS Identification-based Human Activity Recognition System Using Channel State Information

      한글로보기

      https://www.riss.kr/link?id=A109145444

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      본 논문에서는 수신환경에 따라 변화하는 인간 행동 인식 (Human Activity Recognition, HAR)의 정확도를향상시키기 위해 채널 상태 정보 (Chanel State Information, CSI)를 활용한 Line-of-Sight (LoS)/Non-Line-of-Sight (NLoS) 식별 기반 HAR 시스템을 제안한다. 제안 시스템은 수신환경을 고려한 HAR 시스템을 위해 Preprocessing phase, Classification phase, Activity recognition phase의 세 동작 단계를 포함한다. Preprocessing phase에서는 CSI 원시 데이터로부터 진폭이 추출되고, 추출된 진폭 내 노이즈가 제거된다. Classification phase에서는 데이터수신환경이 LoS 환경 또는 NLoS 환경으로 분류되고, 수신환경 분류 결과를 기반으로 HAR 모델이 결정된다. 마지막으로, Activity recognition phase에서는 결정된 HAR 모델을 활용하여 인간의 동작을 앉기, 걷기, 서 있기, 부재중으로분류한다. 제안 시스템의 우수성을 입증하기 위해, 실험적 구현을 수행하였으며 제안 시스템의 정확도를 기존 HAR 시스템의 정확도와 비교하였다. 실험 결과, 제안 시스템은 대조군 대비 16.25% 더 높은 정확도를 달성하였다.
      번역하기

      본 논문에서는 수신환경에 따라 변화하는 인간 행동 인식 (Human Activity Recognition, HAR)의 정확도를향상시키기 위해 채널 상태 정보 (Chanel State Information, CSI)를 활용한 Line-of-Sight (LoS)/Non-Line-of-Sigh...

      본 논문에서는 수신환경에 따라 변화하는 인간 행동 인식 (Human Activity Recognition, HAR)의 정확도를향상시키기 위해 채널 상태 정보 (Chanel State Information, CSI)를 활용한 Line-of-Sight (LoS)/Non-Line-of-Sight (NLoS) 식별 기반 HAR 시스템을 제안한다. 제안 시스템은 수신환경을 고려한 HAR 시스템을 위해 Preprocessing phase, Classification phase, Activity recognition phase의 세 동작 단계를 포함한다. Preprocessing phase에서는 CSI 원시 데이터로부터 진폭이 추출되고, 추출된 진폭 내 노이즈가 제거된다. Classification phase에서는 데이터수신환경이 LoS 환경 또는 NLoS 환경으로 분류되고, 수신환경 분류 결과를 기반으로 HAR 모델이 결정된다. 마지막으로, Activity recognition phase에서는 결정된 HAR 모델을 활용하여 인간의 동작을 앉기, 걷기, 서 있기, 부재중으로분류한다. 제안 시스템의 우수성을 입증하기 위해, 실험적 구현을 수행하였으며 제안 시스템의 정확도를 기존 HAR 시스템의 정확도와 비교하였다. 실험 결과, 제안 시스템은 대조군 대비 16.25% 더 높은 정확도를 달성하였다.

      더보기

      다국어 초록 (Multilingual Abstract)

      In this paper, we propose a Line-of-Sight (LoS)/Non-Line-of-Sight (NLoS) identification- based Human Activity Recognition (HAR) system using Channel State Information (CSI) to improve the accuracy of HAR, which dynamically changes depending on the reception environment. to consider the reception environment of HAR system, the proposed system includes three operational phases: Preprocessing phase, Classification phase, and Activity recognition phase. In the preprocessing phase, amplitude is extracted from CSI raw data, and noise in the extracted amplitude is removed. In the Classification phase, the reception environment is categorized into LoS and NLoS. Then, based on the categorized reception environment, the HAR model is determined based on the result of the reception environment categorization. Finally, in the activity recognition phase, human actions are classified into sitting, walking, standing, and absent using the determined HAR model. To demonstrate the superiority of the proposed system, an experimental implementation was performed and the accuracy of the proposed system was compared with that of the existing HAR system. The results showed that the proposed system achieved 16.25% higher accuracy than the existing system
      번역하기

      In this paper, we propose a Line-of-Sight (LoS)/Non-Line-of-Sight (NLoS) identification- based Human Activity Recognition (HAR) system using Channel State Information (CSI) to improve the accuracy of HAR, which dynamically changes depending on the rec...

      In this paper, we propose a Line-of-Sight (LoS)/Non-Line-of-Sight (NLoS) identification- based Human Activity Recognition (HAR) system using Channel State Information (CSI) to improve the accuracy of HAR, which dynamically changes depending on the reception environment. to consider the reception environment of HAR system, the proposed system includes three operational phases: Preprocessing phase, Classification phase, and Activity recognition phase. In the preprocessing phase, amplitude is extracted from CSI raw data, and noise in the extracted amplitude is removed. In the Classification phase, the reception environment is categorized into LoS and NLoS. Then, based on the categorized reception environment, the HAR model is determined based on the result of the reception environment categorization. Finally, in the activity recognition phase, human actions are classified into sitting, walking, standing, and absent using the determined HAR model. To demonstrate the superiority of the proposed system, an experimental implementation was performed and the accuracy of the proposed system was compared with that of the existing HAR system. The results showed that the proposed system achieved 16.25% higher accuracy than the existing system

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼