Peptide‐mediated membrane fusion is frequently studied with in vitro bulk leaflet mixing assays based on Förster resonance energy transfer (FRET). In these, customized liposomes with fusogenic peptides are equipped with lipids which are labeled wit...
Peptide‐mediated membrane fusion is frequently studied with in vitro bulk leaflet mixing assays based on Förster resonance energy transfer (FRET). In these, customized liposomes with fusogenic peptides are equipped with lipids which are labeled with fluorophores that form a FRET pair. Since FRET is dependent on distance and membrane fusion comes along with lipid mixing, the assays allow for conclusions on the membrane fusion process. The experimental outcome of these assays, however, greatly depends on the applied parameters. In the present study, the influence of the peptides, the size of liposomes, their lipid composition and the liposome stoichiometry on the fusogenicity of liposomes are evaluated. As fusogenic peptides, soluble N‐ethylmaleimide‐sensitive‐factor attachment receptor (SNARE) protein analogues featuring artificial recognition units attached to the native SNARE transmembrane domains are used. The work shows that it is important to control these parameters in order to be able to properly investigate the fusion process and to prevent undesired effects of aggregation.
The membrane fusion of liposomes can be mediated by soluble N‐ethylmaleimide‐sensitive‐factor attachment receptor (SNARE)‐protein derived peptide analogs. Bulk leaflet mixing assays were used to validate the fusiogenic properties of the respective peptides depending on parameters like purity, concentration, and liposome size, composition, and stoichiometry.