RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      LSTM Autoencoder를 활용한 스마트 온실 데이터 이상 탐지 구현 = Implementation of Smart Farm Data Anomaly Detection Using LSTM Autoencoder

      한글로보기

      https://www.riss.kr/link?id=A108636063

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this paper, LSTM (Long-Short Term Memory), a sequence data processing model, is used as an Autoencoder method that reconstructs input smart farm sensor data composed of encoders and decoders to implement an artificial intelligence model that detects anomaly in smart farm. The LSTM Autoencoder was trained by using the normal data collected from the 60 sensors installed for precise control of the greenhouse environment of the smart farm as input sequence values. The trained model obtained a very low train and validation error in the learning process, and the LSTM Autoencoder model that has finally completed the learning process contains information about normal data distribution in the representation vector, so sequence input is restored based on that information. In this restoration precess, when a sequence input that is out of the normal data distribution is received, it is applied to anomaly detection by taking advantage of the fact that the reconstruction error increases because accurate restoration does not proceed. The error that becomes the threshold value that distinguishes normal and abnormal data can be set using the loss distribution obtained in the learning process, and the error for sequence input can be visualized as an image and used for anomaly detection.
      번역하기

      In this paper, LSTM (Long-Short Term Memory), a sequence data processing model, is used as an Autoencoder method that reconstructs input smart farm sensor data composed of encoders and decoders to implement an artificial intelligence model that detect...

      In this paper, LSTM (Long-Short Term Memory), a sequence data processing model, is used as an Autoencoder method that reconstructs input smart farm sensor data composed of encoders and decoders to implement an artificial intelligence model that detects anomaly in smart farm. The LSTM Autoencoder was trained by using the normal data collected from the 60 sensors installed for precise control of the greenhouse environment of the smart farm as input sequence values. The trained model obtained a very low train and validation error in the learning process, and the LSTM Autoencoder model that has finally completed the learning process contains information about normal data distribution in the representation vector, so sequence input is restored based on that information. In this restoration precess, when a sequence input that is out of the normal data distribution is received, it is applied to anomaly detection by taking advantage of the fact that the reconstruction error increases because accurate restoration does not proceed. The error that becomes the threshold value that distinguishes normal and abnormal data can be set using the loss distribution obtained in the learning process, and the error for sequence input can be visualized as an image and used for anomaly detection.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼