본 연구에서는 압축성형공정을 통해 코이어섬유매트/불포화폴리에스터(UPE)수지 복합재료를 제조하고, 이들의 섬유-매트릭스 계면특성, 인장특성, 굴곡특성 및 충격특성에 미치는 코이어섬...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A107796929
2021
Korean
KCI등재,SCIE,SCOPUS
학술저널
501-510(10쪽)
0
0
상세조회0
다운로드국문 초록 (Abstract)
본 연구에서는 압축성형공정을 통해 코이어섬유매트/불포화폴리에스터(UPE)수지 복합재료를 제조하고, 이들의 섬유-매트릭스 계면특성, 인장특성, 굴곡특성 및 충격특성에 미치는 코이어섬...
본 연구에서는 압축성형공정을 통해 코이어섬유매트/불포화폴리에스터(UPE)수지 복합재료를 제조하고, 이들의 섬유-매트릭스 계면특성, 인장특성, 굴곡특성 및 충격특성에 미치는 코이어섬유매트의 알칼리처리에 사용한 NaOH 용액의 농도와 온도의 영향을 조사하였다. 복합재료의 특성들은 알칼리처리에 의해 크게 향상되었으며, 코이어섬유의 표면 topography와 섬유-매트릭스 사이의 층간전단강도는 NaOH 농도에 의존하였다. 25 ℃에서 코이어섬유매트를 알칼리용액으로 처리할 경우, 10 wt% NaOH를 사용하는 것이 복합재료의 물성 향상에 가장 효과적이었다. 5 wt% NaOH 용액을 사용하여 70 ℃에서 코이어매트섬유를 처리하였을 때 가장 우수한 복합재료의 기계적 특성과 충격저항성을 나타냈으며, 10-15 wt% NaOH 용액으로 25 ℃에서 처리한 경우보다 복합재료의 특성 향상에 더 크게 기여하였다. NaOH 용액에 의한 알칼리처리가 복합재료의 물성 향상에는 복합재료를 구성하고 있는 코이어섬유의 머서화를 통한 코이어섬유와 UPE 매트릭스 사이의 계면접착의 향상이 중요한 역할을 하였다.
다국어 초록 (Multilingual Abstract)
In the present study, coir fiber mat/unsaturated polyester (UPE) composites were produced by compression molding process and the effect of concentration and temperature of NaOH solution for alkali-treatment of coir fiber mat on their fiber-matrix inte...
In the present study, coir fiber mat/unsaturated polyester (UPE) composites were produced by compression molding process and the effect of concentration and temperature of NaOH solution for alkali-treatment of coir fiber mat on their fiber-matrix interfacial, tensile, flexural, and impact properties was investigated. The properties were we highly improved by alkali-treatment and the coir fiber surface topography and the interlaminar shear strength depended on the NaOH concentration. When coir fiber mat was alkali-treated at 25 ℃, use of 10 wt% NaOH was most effective to increase the properties. Alkali-treatment of the mat with 5 wt% NaOH solution at 70 ℃ exhibited the best mechanical and impact properties of resulting composites, more contributing to enhancing the composite properties than with 10-15 wt% NaOH solution at 25 ℃. The enhancement of the interfacial adhesion between coir fiber and UPE matrix through the mercerization of coir fibers consisting of the composite played an important role in improving the composite properties via alkali treatment by NaOH solution.
참고문헌 (Reference)
1 정나은, "크림프가 없는 탄소섬유직물/에폭시 복합재료의 동역학, 인장, 굴곡 및 충격 특성에 미치는 프리프레그 Angle-Ply의 영향" 한국고분자학회 44 (44): 61-69, 2020
2 이재영, "라이오셀/폴리락트산 복합재료의 기계적, 열적 특성에 미치는라이오셀 직물의 실란처리 영향" 한국고분자학회 42 (42): 125-132, 2018
3 Rout, J., "The Influence of Fibre Treatment on the Performance of CoirPolyester Composites" 61 : 1303-1310, 2001
4 Noori, A., "The Effect of Mercerization on Thermal and Mechanical Properties of Bamboo Fibers as A Biocomposite Material: A Review" 279 : 122519-, 2021
5 Monhanty, A. K., "Sustainable BioComposites from Renewable Resources: Opportunities and Challenges in the Green Materials World" 1 : 19-26, 2002
6 Rahman, M. M., "Surface Treatment of Coir (Cocos nucifera) Fibers and Its Influence on the Fibers’ PhysicoMechanical Properties" 67 : 2369-2376, 2007
7 Mohanty, A. K., "Surface Modifications of Natural Fibers and Performance of the Resulting Biocomposites:An Overview" 8 : 313-343, 2001
8 Abdelmouleh, M., "Short Natural-Fibre Reinforced Polyethylene and Natural Rubber Composites: Effect of Silane Coupling Agents and Fibres Loading" 67 : 1627-1639, 2007
9 Cho, D., "Polymer Composites Volume 3: Biocomposites" Wiley-VCH Verlag GmbH & Co, KGaA 133-177, 2013
10 Kim, Y., "Novel Silk Fibroin Fiber-Reinforced Poly(butylene succinate) Biocomposites:Electron Beam Treatment Effect of Silk on the Interfacial, Thermal, Mechanical and Impact Properties" 8 : 261-272, 2014
1 정나은, "크림프가 없는 탄소섬유직물/에폭시 복합재료의 동역학, 인장, 굴곡 및 충격 특성에 미치는 프리프레그 Angle-Ply의 영향" 한국고분자학회 44 (44): 61-69, 2020
2 이재영, "라이오셀/폴리락트산 복합재료의 기계적, 열적 특성에 미치는라이오셀 직물의 실란처리 영향" 한국고분자학회 42 (42): 125-132, 2018
3 Rout, J., "The Influence of Fibre Treatment on the Performance of CoirPolyester Composites" 61 : 1303-1310, 2001
4 Noori, A., "The Effect of Mercerization on Thermal and Mechanical Properties of Bamboo Fibers as A Biocomposite Material: A Review" 279 : 122519-, 2021
5 Monhanty, A. K., "Sustainable BioComposites from Renewable Resources: Opportunities and Challenges in the Green Materials World" 1 : 19-26, 2002
6 Rahman, M. M., "Surface Treatment of Coir (Cocos nucifera) Fibers and Its Influence on the Fibers’ PhysicoMechanical Properties" 67 : 2369-2376, 2007
7 Mohanty, A. K., "Surface Modifications of Natural Fibers and Performance of the Resulting Biocomposites:An Overview" 8 : 313-343, 2001
8 Abdelmouleh, M., "Short Natural-Fibre Reinforced Polyethylene and Natural Rubber Composites: Effect of Silane Coupling Agents and Fibres Loading" 67 : 1627-1639, 2007
9 Cho, D., "Polymer Composites Volume 3: Biocomposites" Wiley-VCH Verlag GmbH & Co, KGaA 133-177, 2013
10 Kim, Y., "Novel Silk Fibroin Fiber-Reinforced Poly(butylene succinate) Biocomposites:Electron Beam Treatment Effect of Silk on the Interfacial, Thermal, Mechanical and Impact Properties" 8 : 261-272, 2014
11 Mohanty, A. K., "Natural Fibers, Biopolymers, and Biocomposites" Taylor & Francis 2005
12 Aziz, S. H., "Modified Polyester Resin for Natural Fibre Composites" 65 : 525-535, 2005
13 Kim, J. T., "Mercerization of Sisal Fibers: Effect of Tension on Mechanical Properties of Sisal Fiber and FiberReinforced Composites" 45 : 1245-1252, 2010
14 Han, Y. H., "Kenaf/Polypropylene Biocomposites: Effects of Electron Beam Irradiation and Alkali Treatment on Kenaf Natural Fibers" 14 : 559-578, 2007
15 Nishio, T., "Kenaf Reinforced Biodegradable Composite" 63 : 1281-1286, 2003
16 Rot, K., "Interfacial Effects in Glass Fibre Composites as A Function of Unsaturated Polyester Resin Composition" 32 : 511-516, 2001
17 Van de Weyenbreg, I., "Influence of Processing and Chemical Treatment of Flax Fibres on Their Composites" 63 : 1241-1246, 2003
18 Ji, S. G., "Influence of Electron Beam Treatment of Jute on the Thermal Properties of Random and Two-Directional Jute/Poly(lactic acid) Green Composites" 27 : 1359-1373, 2013
19 Goda, K., "Improvement of Plant-Based Natural Fibers for Toughening Green Composites-Effect of Load Application During Mercerization of Ramie Fibers" 37 : 2213-2220, 2006
20 Cho, D., "Green Composites Using Environmentally Friendly Natural Fibers" 22 : 44-51, 2006
21 Cho, D., "Fiber Surface Treatments for Improvement of the Interfacial Adhesion and Flexural and Thermal Properties of Jute/Poly(lactic acid) Biocomposites" 1 : 331-340, 2007
22 조동환, "Effect of Natural Fiber Surface Treatments on the Interfacial and Mechanical Properties of Henequen/Polypropylene Biocomposites" 한국고분자학회 16 (16): 411-417, 2008
23 Huda, S., "Effect of Fiber Surface-Treatments on the Properties of Laminated Biocomposites from Poly(lactic acid) (PLA) and Kenaf Fibers" 68 : 424-432, 2008
24 Jung, S., "Effect of Fiber Feeding Route upon Extrusion Process on the Electromagnetic, Mechanical, and Thermal Properties of Nickel-Coated Carbon Fiber/Polypropylene Composites" 187 : 107861-, 2020
25 Cho, D., "Eco-Friendly Biocomposite Materials Using Biofibers" 13 : 460-476, 2002
26 Bledzki, A. K., "Composites Reinforced with Cellulose Based Fibres" 24 : 221-274, 1999
27 Netravali, A. N., "Composites Get Greener" 6 : 22-29, 2003
28 Brahmakumar, M., "Coconut Fibre Reinforced Polyethylene Composites: Effect of Natural Waxy Surface Layer of the Fibre on Fibre/Matrix Interfacial Bonding and Strength of Composites" 65 : 563-569, 2005
29 Cho, D., "Cellulose-Based Natural Fiber Topography and the Interfacial Shear Strength of Henequen/Unsaturated Polyester Composites: Influence of Water and Alkali Treatments" 16 : 769-779, 2009
30 Mohanty, A. K., "Biofibers, Biodegradable Polymers and Biocomposites: An Overview" 276-277 : 1-24, 2000
31 Joshi, S. V., "Are Natural Fiber Composites Environmentally Superior to Glass Fiber Reinforced Composites?" 35 : 371-378, 2004
32 Joseph, S., "A Comparison of the Mechanical Properties of Phenol Formaldehyde Composites Reinforced with Banana Fibres and Glass Fibres" 62 : 1857-1868, 2002
Mechanical and Damping Properties of Graphene-Modified Polyurethane-Epoxy Composites for Structures
리포좀 개질화된 로즈마린산의 특성 분석과 항암 · 항산화 효과
학술지 이력
연월일 | 이력구분 | 이력상세 | 등재구분 |
---|---|---|---|
2023 | 평가예정 | 해외DB학술지평가 신청대상 (해외등재 학술지 평가) | |
2020-01-01 | 평가 | 등재학술지 유지 (해외등재 학술지 평가) | |
2012-06-04 | 학술지명변경 | 외국어명 : 미등록 -> POLYMER(KOREA) | |
2010-01-01 | 평가 | 등재학술지 유지 (등재유지) | |
2008-01-01 | 평가 | 등재학술지 유지 (등재유지) | |
2006-01-01 | 평가 | 등재학술지 유지 (등재유지) | |
2004-01-01 | 평가 | 등재학술지 유지 (등재유지) | |
2001-07-01 | 평가 | 등재학술지 선정 (등재후보2차) | |
1999-01-01 | 평가 | 등재후보학술지 선정 (신규평가) |
학술지 인용정보
기준연도 | WOS-KCI 통합IF(2년) | KCIF(2년) | KCIF(3년) |
---|---|---|---|
2016 | 0.58 | 0.47 | 0.5 |
KCIF(4년) | KCIF(5년) | 중심성지수(3년) | 즉시성지수 |
0.45 | 0.43 | 0.401 | 0.13 |