개인화 서비스의 중요도가 높아짐에 따라 다양한 산업 간 데이터 결합이 활성화되고 있다. 그러나 기존 데이터 결합 방식은 민감한 정보를 포함한 데이터를 직접 주고 받기 때문에 개인정보...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A109264343
2024
Korean
KCI우수등재
학술저널
629-639(11쪽)
0
상세조회0
다운로드국문 초록 (Abstract)
개인화 서비스의 중요도가 높아짐에 따라 다양한 산업 간 데이터 결합이 활성화되고 있다. 그러나 기존 데이터 결합 방식은 민감한 정보를 포함한 데이터를 직접 주고 받기 때문에 개인정보...
개인화 서비스의 중요도가 높아짐에 따라 다양한 산업 간 데이터 결합이 활성화되고 있다. 그러나 기존 데이터 결합 방식은 민감한 정보를 포함한 데이터를 직접 주고 받기 때문에 개인정보 유출 가능성이 높다는 문제점을 가지고 있다. 이에 본 연구에서는 성별 또는 연령과 같은 최소한의 고유정보를 활용해 데이터를 결합하는 방식을 제안한다. 데이터 보안을 강화하기 위해 연합 학습 (Federated learning)과 분할 학습 (Split learning)을 차용하여 모델을 학습시켰으며, 그 결과 SEC 프로세스를 통해 데이터를 결합한 경우, 결합 전 단일일 데이터에 비해 더욱 향상된 예측 성능을 보였다. 이처럼 SEC 프로세스를 통해 최소한의 고유정보를 사용한 데이터 결합은 개인정보를 침해를 예방하여 프라이버시 보호를 강화한다는 점에서 기존 데이터 결합 방식의 문제 개선과 더불어, 더욱 향상된 예측을 통해 다양한 서비스에 적용할 수 있을 것으로 기대된다.
다국어 초록 (Multilingual Abstract)
As the importance of personalized services increases, data combination across different industries is becoming more active. However, existing data combining methods have the problem of high possibility of personal information leakage because of the di...
As the importance of personalized services increases, data combination across different industries is becoming more active. However, existing data combining methods have the problem of high possibility of personal information leakage because of the direct exchange of data containing sensitive information. So in this study, we suggest a data combination method using minimal unique information such as gender and age. We used Federated Learning and Split Learning to enhance data security when training the model. As a result, combining data through the SEC process showed improved prediction performance compared to raw data. Data combination using minimal unique information through the SEC process enhances privacy protection by preventing infringement of personal information. So we expect this method can not only improving problems with existing data combination methods, but also be applied to various services through improved predictions.