RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Genome-wide identififi cation and expression analysis of the frigida domain gene family in Prunus mume (Prunus mume Sieb. et Zucc.)

      한글로보기

      https://www.riss.kr/link?id=A107992100

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Frigida genes play a key role in regulating fl owering time in plants. In this study, we identifi ed 12 PmFRL genes and namedthem according to their chromosomal positions. These genes are unevenly distributed on fi ve chromosomes. Phylogeneticanalysis...

      Frigida genes play a key role in regulating fl owering time in plants. In this study, we identifi ed 12 PmFRL genes and namedthem according to their chromosomal positions. These genes are unevenly distributed on fi ve chromosomes. Phylogeneticanalysis of Frigida-like proteins of four Rosaceae species and Arabidopsis thaliana showed that these proteins could bedivided into fi ve subfamilies (I–V), and subfamily I ( FRI ) was absent in Rosaceae species. To further reveal the potentialfunctions of these proteins, we performed duplication analysis and found three tandem duplication events and one segmentalduplication event. Tandem duplication promoted the expansion and evolution of the PmFRL genes. RNA-seq analysis showedthat the PmFRL genes were expressed in diff erent tissues, but there were signifi cant diff erences in the expression of somegenes during dormancy. RT-qPCR results supported the RNA-seq results, suggesting that PmFRL genes may be involvedin the regulation of dormancy in Japanese apricot. In conclusion, our comprehensive analysis provides information on theevolution and possible functions of PmFRL genes, laying a foundation for further research on the PmFRL family.

      더보기

      참고문헌 (Reference)

      1 Qixiang Zhang, "The genome of Prunus mume" Springer Science and Business Media LLC 3 (3): 1318-, 2012

      2 Richard C. Moore, "The early stages of duplicate gene evolution" Proceedings of the National Academy of Sciences 100 (100): 15682-15687, 2003

      3 Chen C, "TBtools - an integrative toolkit developed for interactive analyses of big biological data" 2020

      4 Kyung-gi Hyun, "Structural Analysis of FRIGIDA Flowering-Time Regulator" Elsevier BV 9 (9): 618-620, 2016

      5 Fabio Fornara, "SnapShot: Control of Flowering in Arabidopsis" Elsevier BV 141 (141): 550-550.e2, 2010

      6 Zhaoguo Tong, "Selection of reliable reference genes for gene expression studies in peach using real-time PCR" Springer Science and Business Media LLC 10 (10): 71-84, 2009

      7 Sanghee Kim, "SUPPRESSOR OF FRIGIDA4, Encoding a C2H2-Type Zinc Finger Protein, Represses Flowering by Transcriptional Activation ofArabidopsis FLOWERING LOCUS C" Oxford University Press (OUP) 18 (18): 2985-2998, 2006

      8 Chikako Shindo, "Role of FRIGIDA and FLOWERING LOCUS C in Determining Variation in Flowering Time of Arabidopsis" Oxford University Press (OUP) 138 (138): 1163-1173, 2005

      9 Xiangyang Hu, "Proteasome-Mediated Degradation of FRIGIDA Modulates Flowering Time in Arabidopsis during Vernalization" Oxford University Press (OUP) 26 (26): 4763-4781, 2014

      10 S. N. Liu, "Overexpression of the repressor gene PvFRI-L from Phyllostachys violascens delays flowering time in transgenic Arabidopsis thaliana" Institute of Experimental Botany 60 (60): 401-409, 2016

      1 Qixiang Zhang, "The genome of Prunus mume" Springer Science and Business Media LLC 3 (3): 1318-, 2012

      2 Richard C. Moore, "The early stages of duplicate gene evolution" Proceedings of the National Academy of Sciences 100 (100): 15682-15687, 2003

      3 Chen C, "TBtools - an integrative toolkit developed for interactive analyses of big biological data" 2020

      4 Kyung-gi Hyun, "Structural Analysis of FRIGIDA Flowering-Time Regulator" Elsevier BV 9 (9): 618-620, 2016

      5 Fabio Fornara, "SnapShot: Control of Flowering in Arabidopsis" Elsevier BV 141 (141): 550-550.e2, 2010

      6 Zhaoguo Tong, "Selection of reliable reference genes for gene expression studies in peach using real-time PCR" Springer Science and Business Media LLC 10 (10): 71-84, 2009

      7 Sanghee Kim, "SUPPRESSOR OF FRIGIDA4, Encoding a C2H2-Type Zinc Finger Protein, Represses Flowering by Transcriptional Activation ofArabidopsis FLOWERING LOCUS C" Oxford University Press (OUP) 18 (18): 2985-2998, 2006

      8 Chikako Shindo, "Role of FRIGIDA and FLOWERING LOCUS C in Determining Variation in Flowering Time of Arabidopsis" Oxford University Press (OUP) 138 (138): 1163-1173, 2005

      9 Xiangyang Hu, "Proteasome-Mediated Degradation of FRIGIDA Modulates Flowering Time in Arabidopsis during Vernalization" Oxford University Press (OUP) 26 (26): 4763-4781, 2014

      10 S. N. Liu, "Overexpression of the repressor gene PvFRI-L from Phyllostachys violascens delays flowering time in transgenic Arabidopsis thaliana" Institute of Experimental Botany 60 (60): 401-409, 2016

      11 Julie D. Thompson, "Multiple Sequence Alignment Using ClustalW and ClustalX" Wiley 00 (00): 2-3, 2003

      12 Sudhir Kumar, "MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets" Oxford University Press (OUP) 33 (33): 1870-1874, 2016

      13 Stephen R Keller, "Local Selection Across a Latitudinal Gradient Shapes Nucleotide Diversity in Balsam Poplar, Populus balsamifera L" Oxford University Press (OUP) 188 (188): 941-952, 2011

      14 Isabel C. Bezerra, "Lesions in the mRNA cap-binding gene ABA HYPERSENSITIVE 1 suppress FRIGIDA-mediated delayed flowering in Arabidopsis" Wiley 40 (40): 112-119, 2004

      15 Shahid Iqbal, "Identification and expression profiling of sugar transporter genes during sugar accumulation at different stages of fruit development in apricot" Elsevier BV 742 : 144584-, 2020

      16 Yanyan Wang, "Identification and characterization of the bZIP transcription factor family and its expression in response to abiotic stresses in sesame" Public Library of Science (PLoS) 13 (13): e0200850-, 2018

      17 Lei Wang, "Hydrogen cyanamide improves endodormancy release and blooming associated with endogenous hormones in ‘Summit’ sweet cherry trees" Informa UK Limited 45 (45): 1-15, 2017

      18 Natalia Gomes Vieira, "Homeologous regulation of Frigida-like genes provides insights on reproductive development and somatic embryogenesis in the allotetraploid Coffea arabica" Springer Science and Business Media LLC 9 (9): 8446-, 2019

      19 Liming Miao, "Genome-wide identification, phylogeny, evolution, and expression patterns of MtN3/saliva/SWEET genes and functional analysis of BcNS in Brassica rapa" Springer Science and Business Media LLC 19 (19): 174-, 2018

      20 Lulu Li, "Genome-wide identification, characterization and expression analysis of the HD-Zip gene family in the stem development of the woody plant Prunus mume" PeerJ 7 : e7499-, 2019

      21 Jian Ma, "Genome-wide identification and analysis of the MADS-box gene family in bread wheat (Triticum aestivum L.)" Public Library of Science (PLoS) 12 (12): e0181443-, 2017

      22 Yanbing G, "Genome-wide identifi cation and expression analysis of the WRKY gene family in peach" 38 : 254-270, 2016

      23 Li J, "Genome-wide identifi cation and analysis of the SBP-box family genes in apple(Malus×domesticaBorkh. )" 70 : 100-114, 2013

      24 Wenjun Zhong, "Genome-wide expression profiles of seasonal bud dormancy at four critical stages in Japanese apricot" Springer Science and Business Media LLC 83 (83): 247-264, 2013

      25 Yujiao Wang, "Genome-wide analysis of VQ motif-containing proteins in Moso bamboo (Phyllostachys edulis)" Springer Science and Business Media LLC 246 (246): 165-181, 2017

      26 Zhenjun Li, "Genome-Wide Identification and Analysis of the MYB Transcription Factor Superfamily inSolanum lycopersicum" Oxford University Press (OUP) 57 (57): 1657-1677, 2016

      27 Feng Cheng, "Gene retention, fractionation and subgenome differences in polyploid plants" Springer Science and Business Media LLC 4 (4): 258-268, 2018

      28 Zhang L, "Functional analysis of FRIGIDA using naturally occurring variation in Arabidopsis thaliana" 2020

      29 S. D. Michaels, "FRIGIDA-related genes are required for the winter-annual habit in Arabidopsis" Proceedings of the National Academy of Sciences 101 (101): 3281-3285, 2004

      30 Robert J. Schmitz, "FRIGIDA-ESSENTIAL 1 interacts genetically with FRIGIDAand FRIGIDA-LIKE 1 to promote the winter-annual habit of Arabidopsis thaliana" The Company of Biologists 132 (132): 5471-5478, 2005

      31 Zicong Li, "FRIGIDA establishes a local chromosomal environment for FLOWERING LOCUS C mRNA production" Springer Science and Business Media LLC 4 (4): 836-846, 2018

      32 Joanna M. Risk, "FRIGIDA and related proteins have a conserved central domain and family specific N- and C- terminal regions that are functionally important" Springer Science and Business Media LLC 73 (73): 493-505, 2010

      33 Schläppi MR, "FRIGIDA LIKE 2 is a functional allele in Landsberg erecta and compensates for a nonsense allele of FRIGIDA LIKE 1" 142 : 1728-1738, 2007

      34 Yuehui Chao, "Expression of the alfalfa FRIGIDA-Like Gene, MsFRI-L delays flowering time in transgenic Arabidopsis thaliana" Springer Science and Business Media LLC 40 (40): 2083-2090, 2013

      35 Gao Z, "Evaluation of chilling and heat requirements in japanese apricot with three models" 47 : 1826-1831, 2012

      36 Guixia Xu, "Divergence of duplicate genes in exon–intron structure" Proceedings of the National Academy of Sciences 109 (109): 1187-1192, 2012

      37 B. G. Hall, "Building Phylogenetic Trees from Molecular Data with MEGA" Oxford University Press (OUP) 30 (30): 1229-1235, 2013

      38 Shi T, "Association between blooming time and climatic adaptation in Prunus mume" 2020

      39 Stephen A. Goff, "A draft sequence of the rice genome (Oryza sativa L. ssp. japonica)" American Association for the Advancement of Science (AAAS) 296 (296): 92-100, 2002

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-04-07 학술지명변경 한글명 : -> Horticulture, Environment, and Biotechnology KCI등재
      2006-02-28 학술지명변경 한글명 : 한국원예학회지 ->
      외국어명 : Journal of the Korean Horticultural Scie -> Horticulture, Environment, and Biotechnology
      KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.89 0.35 0.69
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.59 0.5 0.638 0.05
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼