RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS KCI등재

      An Arithmetic System over Finite Fields

      한글로보기

      https://www.riss.kr/link?id=A101324473

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper propose the method of constructing the highly efficiency adder and multiplier systems over finite fields. The addition arithmetic operation over finite field is simple comparatively because that addition arithmetic operation is analyzed by each digit modP summation independently. But in case of multiplication arithmetic operation, we generate maximum k=2m-2 degree of ${\alpha}^k$ terms, therefore we decrease k into m-1 degree using irreducible primitive polynomial. We propose two method of control signal generation for the purpose of performing above decrease process. One method is the combinational logic expression and the other method is universal signal generation. The proposed method of constructing the highly adder/multiplier systems is as following. First of all, we obtain algorithms for addition and multiplication arithmetic operation based on the mathematical properties over finite fields, next we construct basic cell of A-cell and M-cell using T-gate and modP cyclic gate. Finally we construct adder module and multiplier module over finite fields after synthesizing ${\alpha}^k$ generation module and control signal CSt generation module with A-cell and M-cell. Next, we constructing the arithmetic operation unit over finite fields. Then, we propose the future research and prospects.
      번역하기

      This paper propose the method of constructing the highly efficiency adder and multiplier systems over finite fields. The addition arithmetic operation over finite field is simple comparatively because that addition arithmetic operation is analyzed by ...

      This paper propose the method of constructing the highly efficiency adder and multiplier systems over finite fields. The addition arithmetic operation over finite field is simple comparatively because that addition arithmetic operation is analyzed by each digit modP summation independently. But in case of multiplication arithmetic operation, we generate maximum k=2m-2 degree of ${\alpha}^k$ terms, therefore we decrease k into m-1 degree using irreducible primitive polynomial. We propose two method of control signal generation for the purpose of performing above decrease process. One method is the combinational logic expression and the other method is universal signal generation. The proposed method of constructing the highly adder/multiplier systems is as following. First of all, we obtain algorithms for addition and multiplication arithmetic operation based on the mathematical properties over finite fields, next we construct basic cell of A-cell and M-cell using T-gate and modP cyclic gate. Finally we construct adder module and multiplier module over finite fields after synthesizing ${\alpha}^k$ generation module and control signal CSt generation module with A-cell and M-cell. Next, we constructing the arithmetic operation unit over finite fields. Then, we propose the future research and prospects.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼