RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Climatic and Landscape Controls on Long‐Term Baseflow

      한글로보기

      https://www.riss.kr/link?id=O112006133

      • 저자
      • 발행기관
      • 학술지명
      • 권호사항
      • 발행연도

        2021년

      • 작성언어

        -

      • Print ISSN

        0043-1397

      • Online ISSN

        1944-7973

      • 등재정보

        SCI;SCIE;SCOPUS

      • 자료형태

        학술저널

      • 수록면

        n/a-n/a   [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]

      • 소장기관
      • 구독기관
        • 전북대학교 중앙도서관  
        • 성균관대학교 중앙학술정보관  
        • 부산대학교 중앙도서관  
        • 전남대학교 중앙도서관  
        • 제주대학교 중앙도서관  
        • 중앙대학교 서울캠퍼스 중앙도서관  
        • 인천대학교 학산도서관  
        • 숙명여자대학교 중앙도서관  
        • 서강대학교 로욜라중앙도서관  
        • 계명대학교 동산도서관  
        • 충남대학교 중앙도서관  
        • 한양대학교 백남학술정보관  
        • 이화여자대학교 중앙도서관  
        • 고려대학교 도서관  
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      For evaluating the climatic and landscape controls on long‐term baseflow, baseflow index (BFI, defined as the ratio of baseflow to streamflow) and baseflow coefficient (BFC, defined as the ratio of baseflow to precipitation) are formulated as functi...

      For evaluating the climatic and landscape controls on long‐term baseflow, baseflow index (BFI, defined as the ratio of baseflow to streamflow) and baseflow coefficient (BFC, defined as the ratio of baseflow to precipitation) are formulated as functions of climate aridity index, storage capacity index (defined as the ratio of average soil water storage capacity to precipitation), and a shape parameter for the spatial variability of storage capacity. The derivation is based on the two‐stage partitioning framework and a cumulative distribution function for storage capacity. Storage capacity has a larger impact on BFI than on BFC. When storage capacity index is smaller than 1, BFI is less sensitive to storage capacity index in arid regions compared to that in humid regions; whereas, when storage capacity index is larger than 1, BFI is less sensitive to storage capacity index in humid regions. The impact of storage capacity index on BFC is only significant in humid regions. The shape parameter plays an important role on fast flow generation at the first‐stage partitioning in humid regions and baseflow generation at the second‐stage partitioning in arid regions. The derived formulae were applied to more than 400 catchments where storage capacity index was found to follow a logarithmic function with climate aridity index. The role of climate forcings at finer timescales on baseflow were quantified, indicating that seasonality in climate forcings has a significant control especially on BFI.
      Baseflow is a portion of streamflow from delayed storage such as groundwater, and it is crucial for human water supply and ecological environments. Studies have indicated both climate and catchment landscape have impacts on baseflow generation. However, their respective roles on mean annual baseflow are not fully understood. This study derives new functions to analyze the mediation effects of soil water storage capacity on the process of precipitation partitioning, and uses numerical simulations to evaluate the role of climate forcings at finer timescales on mean annual baseflow. Two widely used baseflow metrics are focused on here: baseflow index (BFI), defined as the ratio of baseflow to total streamflow; and baseflow coefficient (BFC), defined as the ratio of baseflow to precipitation. Our results show that the spatial variability of soil water storage capacity plays an important role in baseflow generation, and the impact of soil water storage capacity on BFI spreads across regions with different climates, while its impact on BFC is only significant in humid regions. Numerical simulation shows that seasonality in climate forcings has a vital influence on BFI. Our study advances our knowledge of physical controls on baseflow generation.



      Derived baseflow index (BFI) and baseflow coefficient (BFC) as functions of aridity index, storage capacity index, and a shape parameter

      When storage capacity index is small (large), BFI is less sensitive to climate aridity index in arid (humid) regions

      The control of climate variability (particularly seasonality) on BFI is strong, but not for BFC


      Derived baseflow index (BFI) and baseflow coefficient (BFC) as functions of aridity index, storage capacity index, and a shape parameter
      When storage capacity index is small (large), BFI is less sensitive to climate aridity index in arid (humid) regions
      The control of climate variability (particularly seasonality) on BFI is strong, but not for BFC

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼