1 Bruner, J. S., Wood, D., Ross, G., "The role of tutoring in problem solving", 17(2), 89–100. https://doi. org/10.1111/j.1469-7610.1976. tb00381. x, 1976
2 Baddeley, A, "Working memory and language: An overview", 36(3), 189–208. https://doi. org/10.1016/S0021-9924(03)00019-4, 2003
3 Engle, R. W., Turner, M. L., "Is working memory capacity task dependent?", 28(2), 127–154. https://doi. org/10.1016/0749-596X(89)90040-5, 1989
4 Shute, V. J., "Who is likely to acquire programming skills?", 7(1), 1–24. https://doi. org/10.2190/VQJD-T1YD-5WVB-RYPJ, 1991
5 Carpenter, P. A, Daneman, M., "Individual differences in working memory and reading", 19(4), 450–466. https://doi. org/10.1016/S0022-5371(80)90312-6, 1980
6 Engle, R. W., "Role of working memory capacity in cognitive control", 51(1), 517–526. https://doi. org/10.1086/650572, 2010
7 Haywood, H. C., Karpov, Y. V., "Two ways to elaborate Vygotsky's concept of mediation", 53(1), 27–36. https://doi. org/10.1037/0003-066X.53.1.27, 1998
8 Cohen , J, "Statistical power analysis for the behavioral sciences", 2nd ed., 1988
9 Das-Smaal, E., de Jong, P., "The star counting test: An attention test for children", 11(6), 597–604. https://doi. org/10.1016/0191-8869(90)90043-Q, 1990
10 Robins, A., Rountree, N., Rountree, J., "Learning and teaching programming: A review and discussion", 13(2), 137–172. https://doi. org/10.1076/csed.13.2.137.14200, 2003
11 Das-Smaal, E. A., de Jong, P. F., Koopmans, J. R., "Working memory, attentional regulation and the Star Counting Test", 14(6), 815–824. https://doi. org/10.1016/0191-8869(93)90094-J, 1993
12 Molenaar, I., van Boxtel, C. A., Sleegers, P. J., "The effects of scaffolding metacognitive activities in small groups", 26(6), 1727–1738. https://doi. org/10.1016/j. chb.2010.06.022, 2010
13 Hargrove, R. A., Nietfeld, J. L., "The impact of metacognitive instruction on creative problem solving", 83(3), 291–318. https://doi. org/10.1080/00220973.2013.876604, 2015
14 Bunting, M. F., Wilhelm, O., Kane, M. J., Hambrick, D. Z., Engle, R. W., Conway, A. R. A., "Working memory span tasks: A methodological review and user's guide", 12(5), 769–786. https://doi. org/10.3758/BF03196772, 2005
15 Kalelioğlu, F., "A new way of teaching programming skills to K-12 students: Code. org", Computers 52, 200–210. https://doi. org/10.1016/j. chb.2015.05.047, 2015
16 Chiu, M. M., van Boxtel, C., Sleegers, P., Molenaar, I., "Scaffolding of small groups’ metacognitive activities with an avatar", 6(4), 601–624. https://doi. org/10.1007/s11412-011-9130-z, 2011
17 Weigend, M., "The digital woodlouse–Scaffolding in science-related scratch projects", 13(2), 293–305. https://doi. org/10.15388/infedu.2014.18, 2014
18 Booth, J., Toye, M., Robertson, J., Gray, S., "The relationship between executive functions and computational thinking", 3(4), 35–49. https://doi. org/10.21585/ijcses. v3i4.76, 2020
19 Baddeley, A., Leigh, E., Jarrold, C., Gunn, D., Bayliss, D., "Mapping the developmental constraints on working memory span performance", 41, 579–597. https://doi. org/10.1037/0012-1649.41.4.579, 2005
20 Cowan, N., "The magical mystery four: How is working memory capacity limited, and why?", 19(1), 51–57. https://doi. org/10.1177/0963721409359277, 2010
21 Bagheri, M. S., Yamini, M., Razaghi, M., "The impact of cognitive scaffolding on Iranian EFL learners' speaking skill", 12(4), 95–112, 2019
22 Lecerf, T., Roulin, J. L., "Distinction between visuo-spatial short-term-memory and working memory span tasks", 65(1), 37–54. https://doi. org/10.1024/1421-0185.65.1.37, 2006
23 In M. J. Jacobson, Soloway, E., R. B. Kozma (Eds, Metcalf, S. J., Krajcik, J., "Model-It: A design retrospective Innovations in science and mathematics education", 1st ed., 77–115, 2000
24 Adams, C., Lu, C., Cutumisu, M., "A scoping review of empirical research on recent computational thinking assessments", 28(6), 651–676. https://doi. org/10.1007/s10956-019-09799-3, 2019
25 In J. V. Wertsch (Ed., Vygotsky, L. S., "The genesis of higher mental functions The concept of activity in Soviet psychology", pp. 144–188, 1981
26 Chen, J., Zhong, B., Wang, Q., Li, Y., "An exploration of three-dimensional integrated assessment for computational thinking", 53(4), 562–590. https://doi. org/10.1177/0735633115608444, 2016
27 Daley, B. J., Roessger, K. M., Hafez, D. A., "Effects of teaching concept mapping using practice, feedback, and relational framing", 54, 11– 21. https://doi. org/10.1016/j. learninstruc.2018.01.011, 2018
28 Moreno-León, J., Román-González, M., Robles, G., Pérez-González, J. C., "Extending the nomological network of computational thinking with non-cognitive factors", 80, 441–459. https://doi. org/10.1016/j. chb.2017.09.030, 2018
29 Flavell, J. H., "Metacognition and cognitive monitoring: A new area of cognitive– developmental inquiry", 34(10), 906–911. https://doi. org/10.1037/0003-066X.34.10.906, 1979
30 Mayer, R., Shneiderman, B., "Syntactic/semantic interactions in programmer behavior: A model and experimental results", 8(3), 219–238. https://doi. org/10.1007/BF00977789, 1979
31 Hoffman, B., Schraw, G., "The influence of self-efficacy and working memory capacity on problem-solving efficiency", 19(1), 91–100. https://doi. org/10.1016/j. lindif.2008.08.001, 2009
32 Jacobs, J. E., Paris, S. G., "Children's metacognition about reading: Issues in definition, measurement, and instruction", 22(3-4), 255– 278. https://doi. org/10.1080/00461520.1987.9653052, 1987
33 Darhmaoui, H., Ouahbi, I., Lahmine, S., Kaddari, F., Elachqar, A., "Learning basic programming concepts by creating games with scratch programming environment", 191, 1479–1482. https://doi. org/10.1016/j. sbspro.2015.04.224, 2015
34 Magimairaj, B. M., O’Malley, M. H., Montgomery, J. W., "Role of working memory in typically developing children’s complex sentence comprehension", 37, 331–354. https://doi. org/10.1007/s10936-008-9077-z, 2008
35 Mackiewicz, J., Thompson, I, "Instruction, cognitive scaffolding, and motivational scaffolding in writing center tutoring", 42(1), 54–78. https://www. jstor. org/stable/compstud.42.1.0054, 2014
36 Hagge, J., "Scratching beyond the surface of literacy: Programming for early adolescent gifted students", 40(3), 154–162. https://doi. org/10.1177/1076217517707233, 2017
37 Moreno-León, J., Román-González, M., Robles, G., Pérez-González, J. C., "Can computational talent be detected? Predictive validity of the Computational Thinking Test", 18, 47–58. https://doi. org/10.1016/j. ijcci.2018.06.004, 2018
38 Azevedo, R., Winters, F. I., Moos, D. C., Greene, J. A., Cromley, J. G., "Adaptive human scaffolding facilitates adolescents’ self-regulated learning with hypermedia", 33(5), 381–412. https://doi. org/10.1007/s11251-005-1273-8, 2005
39 Passolunghi, M. C., Siegel, L., "Working memory and access to numerical information in children with disability in mathematics", 88, 348–367. https://doi. org/10.1016/j. jecp.2004.04.002, 2004
40 Casallas, R., Reyes, A., Restrepo, S., Hernández, M., Flórez, F. B., Danies, G., "Changing a generation’s way of thinking: Teaching computational thinking through programming", 87(4), 834–860. https://doi. org/10.3102/0034654317710096, 2017
41 Kim, H. S., Yum, S. C., Schallert, D. L., "Effects of prior knowledge, working memory, and navigation tools on performance with hypertext", 18(1), 79–108, 2002
42 Kuo, C. H., Prat, C. S., Mottarella, M. J., Madhyastha, T. M., "Relating natural language aptitude to individual differences in learning programming languages", 10(1), 1–10. https://doi. org/10.1038/s41598-020-60661-8, 2020
43 Shao, M., Zhao, L., Su, Y. S., "Effect of mind mapping on creative thinking of children in scratch visual programming education", 60(4), 906–929. https://doi. org/10.1177/07356331211053383, 2022
44 Ghisletta, P., Lecerf, T., Jouffray, C., "Intraindividual variability and level of performance in four visuo-spatial working memory tasks", 63(4), 261–272. https://doi. org/10.1024/1421-0185.63.4.261, 2004
45 Aleven, V., Roll, I., McLaren, B. M., Koedinger, K. R., "Designing for metacognition—applying cognitive tutor principles to the tutoring of help seeking", 2(2), 125–140. https://doi. org/10.1007/s11409-007-9010-0, 2007
46 Kliegl, R., Mayr, U., "Sequential and coordinative complexity: age-based processing limitations in figural transformations", 19(6), 1297–1320. https://doi. org/10.1037/0278-7393.19.6.1297, 1993
47 Azevedo, R., Seibert, D., Cromley, J. G., "Does adaptive scaffolding facilitate students’ ability to regulate their learning with hypermedia?", 29(3), 344–370. https://doi. org/10.1016/j. cedpsych.2003.09.002, 2004
48 Koh, J. H. L., Lye, S. Y., "Review on teaching and learning of computational thinking through programming: What is next for K-12?", Computers 41, 51–61. https://doi. org/10.1016/j. chb.2014.09.012, 2014
49 Barth-Cohen, L., Shen, J., Jiang, S., Huang, X., Eltoukhy, M., Chen, G., "Assessing elementary students’ computational thinking in everyday reasoning and robotics programming", 109, 162–175. https://doi. org/10.1016/j. compedu.2017.03.001, 2017
50 Bergin, D., Teo, T., Lee, C. B., "Children’s use of metacognition in solving everyday problems: An initial study from an Asian context", 36(3), 89–102. https://doi. org/10.1007/BF03216907, 2009
51 Passolunghi, M. C., Vercelloni, B., Schadee, H., "The precursors of mathematics learning: Working memory, phonological ability, and numerical competence", 22, 165–184. https://doi. org/10.1016/j. cogdev.2006.09.001, 2007
52 Kirschner, P. A., Wu, B., Wang, M., Spector, J. M., "Using cognitive mapping to foster deeper learning with complex problems in a computer-based environment", Computers 87, 450–458. https://doi. org/10.1016/j. chb.2018.01.024, 2018
53 Curran, P. J., West, S. G., Finch, J. F., "The robustness of test statistics to nonnormality and specification error in confirmatory factor analysis", 1(1), 16–29. https://doi. org/10.1037/1082-989x.1.1.16, 1996
54 Ahmadi Safa, M., Motaghi, F., "Cognitive vs. metacognitive scaffolding strategies and EFL learners’ listening comprehension development", 1–24. https://doi. org/10.1177/13621688211021821, 2021
55 Lee, J., Noh, J., "Effects of robotics programming on the computational thinking and creativity of elementary school students", 68(1), 463–484. https://doi. org/10.1007/s11423-019-09708-w, 2020
56 Falloon, G., "An analysis of young students’ thinking when completing basic coding tasks using Scratch Jnr. On the iPad", 32(6), 576–593. https://doi. org/10.1111/jcal.12155, 2016
57 Oberauer, K., Wilhelm, O., Süß, H. M., Schulze, R., "Working memory and intelligence-Their correlation and their relation: Comment on Ackerman, Beier, and Boyle", 131, 61–65. https://doi. org/10.1037/0033-2909.131.1.61, 2005
58 Kim, H. S., Kim. J. Y., "The effects of navigation methods and working memory on learning achievement and cognitive load in hypertext", 19(1), 109–128, 2013
59 Chen, M. P., Feng, C. Y., "The effects of goal specificity and scaffolding on programming performance and self‐regulation in game design", 45(2), 285–302. https://doi. org/10.1111/bjet.12022, 2014
60 Jiménez-Fernández, C., Román-González, M., Pérez-González, J. C., "Which cognitive abilities underlie computational thinking? Criterion validity of the Computational Thinking Test", 72, 678–691. https://doi. org/10.1016/j. chb.2016.08.047, 2017
61 Aksit, O., Wiebe, E. N., "Exploring force and motion concepts in middle grades using computational modeling: A classroom intervention study", 29(1), 65–82. https://doi. org/10.1007/s10956-019-09800-z, 2020
62 Korkmaz, Ö., Bai, X., "Adapting computational thinking scale (CTS) for Chinese high school students and their thinking scale skills level", 6(1), 10–26. https://doi. org/10.17275/per.19.2.6.1, 2019
63 Bocian, K., Zheng, X., Swanson, H. L., Moran, A. S., Lussier, C., "Generative strategies, working memory, and word problem solving accuracy in children at risk for math disabilities", 36(4), 203–214. https://doi. org/10.1177/0731948712464034, 2013
64 In H. J. Hartman (Ed, Schraw, G., "Promoting general metacognitive awareness Metacognition in learning and instruction: Theory, research and practice", pp. 3– 16 https://doi. org/10.1007/978-94-017-2243-8_1, 2001
65 Gülbahar, Y., Kalelioğlu, F., "The effects of teaching programming via scratch on problem solving skills: A discussion from learners' perspective", 13(1), 33–50, 2014
66 Swanson, H. L., "Cognitive strategy interventions improve word problem solving and working memory in children with math disabilities", 6, Article 1099. https://doi. org/10.3389/fpsyg.2015.01099, 2015
67 Hwang, G.-H., Yang, T.-C., Yang, S. J., Hwang, G.-J., "A two-tier test-based approach to improving students' computer-programming skills in a web-based learning environment", 18(1), 198– 210. https://www. jstor. org/stable/10.2307/jeductechsoci.18.1.198, 2015
68 Durak, H. Y., Saritepeci, M., "Analysis of the relation between computational thinking skills and various variables with the structural equation model", 116, 191–202. https://doi. org/10.1016/j. compedu.2017.09.004, 2018
69 Dagoc, D., Tan, D. A., "Effects of metacognitive scaffolding on the mathematics performance of grade 6 pupils in a cooperative learning environment", 7(4), 378–391, 2018
70 Ardestani, E. M., Pitenoee, M. R., Modaberi, A., "The effect of cognitive and metacognitive writing strategies on content of the Iranian intermediate EFL learners’ writing", 8(3), 594–600. http://dx. doi. org/10.17507/jltr.0803.19, 2017
71 Erol, O., Kurt, A. A., "The effects of teaching programming with scratch on pre-service information technology teachers' motivation and achievement", 77, 11–18. https://doi. org/10.1016/j. chb.2017.08.017, 2017
72 Swanson, H. L., "Does cognitive strategy training on word problems compensate for working memory capacity in children with math difficulties?", 106, 831–848. https://doi. org/10.1037/a0035838, 2014
73 Bergersen, G. R., Gustafsson, J. E., "Programming skill, knowledge, and working memory among professional software developers from an investment theory perspective", 32(4), 201–209. https://doi. org/10.1027/1614-0001/a000052, 2011
74 Huang, I., Wang, H. Y., Hwang, G. J., "Comparison of the effects of project-based computer programming activities between mathematics-gifted students and average students", 3(1), 33–45. https://doi. org/10.1007/s40692-015-0047-9, 2016
75 Carretti, B., Tencati, C., Drusi, S., Cornoldi, C., "Improving problem solving in primary school students: The effect of a training programme focusing on metacognition and working memory", 85(3), 424–439. https://doi. org/10.1111/bjep.12083, 2015
76 Hu, L., Zhou, D., Sun, L., "Which way of design programming activities is more effective to promote K‐12 students' computational thinking skills? A metaanalysis", 37(4), 1048–1062. https://doi. org/10.1111/jcal.12545, 2021
77 Bacelo, A., Pérez-Marín, D., Pizarro, C., Hijón-Neira, R., "Can computational thinking be improved by using a methodology based on metaphors and scratch to teach computer programming to children?", 105, Article 105849. https://doi. org/10.1016/j. chb.2018.12.027, 2020
78 Román-González, M., Vázquez-Cano, E., Sáez-López, J. M., "Visual programming languages integrated across the curriculum in elementary school: A two year case study using Scratch in five schools", 97, 129–141. https://doi. org/10.1016/j. compedu.2016.03.003, 2016
79 An, Y. J., Cao, L., "Examining the effects of metacognitive scaffolding on students’ design problem solving and metacognitive skills in an online environment", 10(4), 552–568. https://jolt. merlot. org/vol10no4/An_1214. pdf, 2014
80 Bulu, S. T., Pedersen, S., "Scaffolding middle school students’ content knowledge and ill-structured problem solving in a problem-based hypermedia learning environment", 58(5), 507–529. https://doi. org/10.1007/s11423-010-9150-9, 2010
81 Huang, C. S., Yang, S. J., Tern, M. Y., Su, A. Y., Hwang, W. Y., "Investigating the role of computer‐supported annotation in problem-solving-based teaching: An empirical study of a Scratch programming pedagogy", 45(4), 647–665. https://doi. org/10.1111/bjet.12058, 2014
82 Hwang, G.-J., Wang, X.-M., Wang, H.-Y., Liang, Z.-Y., "Enhancing students’ computer programming performances, critical thinking awareness and attitudes towards programming: An online peer-assessment attempt", 20(4), 58–68. https://www. jstor. org/stable/26229205, 2017
83 KaLyuga, S., Zhang, L., Lei, C., Lee, C., "Effectiveness of collaborative learning of computer programming under different learning group formations according to students' prior knowledge: A cognitive load perspective", 27(2), 171–192. https://www. learntechlib. org/primary/p/111825/, 2016
84 Basnet, R. B., Saxena, A., Lemay, D. J., Doleck, T., Bazelais, P., "Algorithmic thinking, cooperativity, creativity, critical thinking, and problem solving: exploring the relationship between computational thinking skills and academic performance", 4(4), 355–369. https://doi. org/10.1007/s40692-017-0090-9, 2017
85 Abassi, A. M., Nordin, Z. S., Channa, M. A., "Metacognitive scaffolding in reading comprehension: Classroom observations reveal strategies to overcome reading obstacles of engineering students at QUEST, Nawabshah, Sindh, Pakistan", 8(3), 131–140. http://doi. org/10.5539/ijel. v8n3p131, 2018
86 Durak, H. Y., "Digital story design activities used for teaching programming effect on learning of programming concepts, programming self‐efficacy, and participation and analysis of student experiences", 34(6), 740–752. https://doi. org/10.1111/jcal.12281, 2018