리튬 이온 배터리는 휴대용 전자 제품, 전기 자동차 및 그리드 규모의 에너지 저장 장치 등과 같이 일상 생활에서다양한 용도로 널리 사용되고 있다. 최근 높은 에너지 밀도, 경량 및 저비용...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A105938032
Van Hiep Nguyen (충남대학교) ; 김영호 (충남대학교)
2018
Korean
KCI등재,SCOPUS,ESCI
학술저널
635-644(10쪽)
1
0
상세조회0
다운로드국문 초록 (Abstract)
리튬 이온 배터리는 휴대용 전자 제품, 전기 자동차 및 그리드 규모의 에너지 저장 장치 등과 같이 일상 생활에서다양한 용도로 널리 사용되고 있다. 최근 높은 에너지 밀도, 경량 및 저비용...
리튬 이온 배터리는 휴대용 전자 제품, 전기 자동차 및 그리드 규모의 에너지 저장 장치 등과 같이 일상 생활에서다양한 용도로 널리 사용되고 있다. 최근 높은 에너지 밀도, 경량 및 저비용과 같은 상업적 요구를 만족하는 리튬이온 배터리 전극 소재 개발을 위하여 상당한 노력이 진행되어 오고 있다. 이 총설에서는 리튬 이온 배터리 양극 및음극 재료의 원리와 최근 연구 동향을 요약하였으며, 특히 전극 소재의 설계 및 고급 특성화 기술을 강조하였다.
참고문헌 (Reference)
1 M. Chen, "Vanadium-doping of LiFePO4/carbon composite cathode materials synthesized with organophosphorus source" 167 : 278-286, 2015
2 A. Sobkowiak, "Understanding and Controlling the Surface Chemistry of LiFeSO4F for an Enhanced Cathode Functionality" 25 : 3020-3029, 2013
3 R. A. Huggins, "US Patent 4,436,796"
4 Y. Idota, "Tin-based amorphous oxide: A High-capacity lithium-ion-storage material" 276 : 1395-1397, 1997
5 P. Roy, "TiO2 nanotubes and their application in dye-sensitized solar cells" 2 : 45-59, 2010
6 C. J. Wen, "Thermodynamic and Mass Transport Properties of “LiAl”" 126 : 2258-2266, 1979
7 M. S. Whittingham, "The lithium intercalates of the transition metal dichalcogenides" 10 : 363-371, 1975
8 J. Chen, "The hydrothermal synthesis and characterization of olivine and related compounds for electrochemical applications" 178 : 1676-1693, 2008
9 B. M. L. Rao, "The Li/TiS2 cell with LiSCN electrolyte" 10 : 757-763, 1980
10 E. N. Attia, "Tailoring the chemistry of blend copolymers boosting the electrochemical performance of Si-based anodes for lithium ion batteries" 5 : 24159-24167, 2017
1 M. Chen, "Vanadium-doping of LiFePO4/carbon composite cathode materials synthesized with organophosphorus source" 167 : 278-286, 2015
2 A. Sobkowiak, "Understanding and Controlling the Surface Chemistry of LiFeSO4F for an Enhanced Cathode Functionality" 25 : 3020-3029, 2013
3 R. A. Huggins, "US Patent 4,436,796"
4 Y. Idota, "Tin-based amorphous oxide: A High-capacity lithium-ion-storage material" 276 : 1395-1397, 1997
5 P. Roy, "TiO2 nanotubes and their application in dye-sensitized solar cells" 2 : 45-59, 2010
6 C. J. Wen, "Thermodynamic and Mass Transport Properties of “LiAl”" 126 : 2258-2266, 1979
7 M. S. Whittingham, "The lithium intercalates of the transition metal dichalcogenides" 10 : 363-371, 1975
8 J. Chen, "The hydrothermal synthesis and characterization of olivine and related compounds for electrochemical applications" 178 : 1676-1693, 2008
9 B. M. L. Rao, "The Li/TiS2 cell with LiSCN electrolyte" 10 : 757-763, 1980
10 E. N. Attia, "Tailoring the chemistry of blend copolymers boosting the electrochemical performance of Si-based anodes for lithium ion batteries" 5 : 24159-24167, 2017
11 A. R. Armstrong, "Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries" 381 : 499-500, 1996
12 Y. Nishida, "Synthesis and properties of gallium-doped LiNiO2 as the cathode material for lithium secondary batteries" 68 : 561-564, 1997
13 M. Z. Kong, "Synthesis and electrochemical properties of a carbon-coated spinel Li4Ti5O12 anode material using soybean oil for lithium-ion batteries" 146 : 12-15, 2015
14 Z. L. Gong, "Synthesis and electrochemical performance of Li2CoSiO4 as cathode material for lithium ion batteries" 174 : 524-527, 2007
15 X. Dai, "Superior electrochemical performance of LiCoO2 electrodes enabled by conductive Al2O3-doped ZnO coating via magnetron sputtering" 298 : 114-122, 2015
16 J. R. Dahn, "Structure and electrochemistry of Li1±yNiO2 and a new Li2NiO2 phase with the Ni (OH)2 structure" 44 : 87-97, 1990
17 A. R. Armstrong, "Structural transformation on cycling layered Li(Mn1-yCoy)O2 cathode materials" 45 : 285-294, 1999
18 T. Ohzuku, "Solid-state redox reactions of LiCoO2 (R3̅m) for 4 volt secondary lithium cells" 141 : 2972-2977, 1994
19 J. Yang, "Small particle size multiphase Li-alloy anodes for lithium-ion batteries" 90 : 281-287, 1996
20 V. H. Nguyen, "Silicon and its effect on the electrochemical properties of Li3V2(PO4)3 cathode material" 44 : 12504-12510, 2018
21 W. Wang, "Silicon and carbon nanocomposite spheres with enhanced electrochemical performance for full cell lithium ion batteries" 7 : 44838-, 2017
22 F. Schipper, "Review- recent advances and remaining challenges for lithium ion battery cathodes" 164 : A6220-A6228, 2017
23 M. S. Park, "Preparation and ectrochemical properties of SnO2 nanowires for application in lithium-ion batteries" 119 : 764-767, 2007
24 S. R. Gowda, "Oxidation state of cross-over manganese species on the graphite electrode of lithium-ion cells" 16 : 6898-6902, 2014
25 G. Amatucci, "Optimization of Insertion Compounds Such as LiMn2O4 for Li-Ion Batteries" 149 : K31-K46, 2002
26 J. C. Zheng, "Novel synthesis of LiVPO4F cathode material by chemical lithiation and postannealing" 202 : 380-383, 2012
27 P. Axmann, "Nonstoichiometric LiFePO4: Defects and Related Properties" 21 : 1636-1644, 2009
28 M. G. Jeong, "Nitrogen-doped carbon coated porous silicon as high performance anode material for lithium-ion batteries" 209 : 299-307, 2016
29 S. Boyanov, "Nanostructured transition metal phosphide as negative electrode for lithium-ion batteries" 14 : 183-190, 2008
30 M. Broussely, "LixNiO2, a promising cathode for rechargeable lithium batteries" 54 : 109-114, 1995
31 M. M. Thackeray, "Lithium insertion into manganese spinels" 18 : 461-472, 1983
32 M. Broussely, "Lithium insertion into host materials: the key to success for Li ion batteries" 45 : 3-22, 1999
33 K. Persson, "Lithium diffusion in graphitic carbon" 1 : 1176-1180, 2010
34 R. Domink, "Li2MnSiO4 as a potential Li-battery cathode material" 174 : 457-461, 2007
35 N. Nitta, "Li-ion battery materials: present and future" 18 : 252-264, 2015
36 C. M. Park, "Li-alloy based anode materials for Li secondary batteries" 39 : 3115-3141, 2010
37 J. Li, "Insight into the capacity fading of layered lithium-rich oxides and its suppression via a film-forming electrolyte additive" 8 : 25794-25801, 2018
38 M. Winter, "Insertion electrode materials for rechargeable lithium batteries" 10 : 725-763, 1998
39 S. Huang, "Improvement of the high-rate discharge properties of LiCoO2 with the Ag additives" 148 : 72-77, 2005
40 Y. Zhang, "Improved electrochemical performance of nitrogen doped TiO2-B nanowires as anode materials for Li-ion batteries" 7 : 12215-12224, 2015
41 X. Zhang, "Improved cycle stability and high security of Li-B alloy anode for lithium-sulfur battery" 2 : 11660-11665, 2014
42 C. C. Li, "Importance of binder compositions to the dispersion and electrochemical properties of water-based LiCoO2 cathodes" 227 : 204-210, 2013
43 L. Yu, "Hydrothermal synthesis of SnO2 and SnO2@C nanorods and their application as anode materials in lithium-ion batteries" 3 : 17821-17826, 2013
44 J. Liu, "Hollow Nanostructured Anode Materials for Li-Ion Batteries" 5 : 1525-1534, 2010
45 조이 오콘, "High Energy Density Germanium Anodes for Next Generation Lithium Ion Batteries" 한국공업화학회 25 (25): 1-13, 2014
46 A. VanderVen, "First-principles evidence for stage ordering in LixCoO2" 145 : 2149-2155, 1998
47 Y. Liu, "Feasibility of lithium storage on graphene and its derivatives" 4 : 1737-1742, 2013
48 X. Li, "Engineering nanostructured anodes via electrostatic spray deposition for high performance lithium ion battery application" 1 : 165-182, 2013
49 X. Li, "Engineering nanostructured anodes via electrostatic spray deposition for high performance lithium ion battery application" 1 : 165-182, 2013
50 T. Perez, "Electrochemical oxidation of cyanide on 3D Ti-RuO2 anode using a filter-press electrolyzer" 177 : 1-6, 2017
51 J. N. Reimers, "Electrochemical and in situ x-ray diffraction studies of lithium intercalation in LixCoO2" 139 : 2091-2097, 1992
52 M. S. Whittingham, "Electrical Energy Storage and Intercalation Chemistry" 192 : 1126-1127, 1976
53 S. Myung, "Effects of Al doping on the microstructure of LiCoO2 cathode materials" 139 : 47-56, 2001
54 A. K. Padhi, "Effect of Structure on the Fe3+/Fe2+ Redox Couple in Iron Phosphates" 144 : 1609-1613, 1997
55 D. Y. Wan, "Effect of Metal (Mn, Ti) Doping on NCA Cathode Materials for Lithium Ion Batteries" 2018 : 8082502-, 2018
56 S. Madhavi, "Effect of Cr dopant on the cathodic behavior of LiCoO2" 48 : 219-226, 2002
57 S. P. Lin, "Effect of Al Addition on Formation of Layer-Structured LiNiO2" 167 : 97-106, 2002
58 Y. Zhu, "Cross-linked porous α-Fe2O3 nanorods as high performance anode materials for lithium ion batteries" 6 : 97385-97390, 2016
59 Y. Qin, "CoO-Co nanocomposite anode with enhanced electrochemical performance for lithium-ion batteries" 224 : 90-95, 2017
60 J. Wang, "Characterization and electrochemical properties of carbon-coated Li4Ti5O12 prepared by a citric acid sol-gel method" 509 : 712-718, 2011
61 T. Shiratsuchi, "Cathodic performance of LiMn1-xMxPO4 (M = Ti, Mg and Zr) annealed in an inert atmosphere" 54 : 3145-3151, 2009
62 B. J. Landi, "Carbon nanotubes for lithium ion batteries" 2 : 638-654, 2009
63 J. He, "Antimony-based materials as promising anodes for rechargeable lithium-ion and sodium-ion batteries" 2 : 437-455, 2018
64 R. A. Huggins, "Advanced Batteries. Materials Science Aspects" Springer US 2009
65 C. de las Casas, "A review of application of carbon nanotubes for lithium ion battery anode material" 208 : 74-85, 2012
66 Q. Wang, "A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries" 52 : 1637-1640, 2016
67 X. Han, "A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification" 251 : 38-54, 2014
고밀도 탄소블럭 제조를 위한 코크스와 바인더피치의 젖음성에 미치는 불소화의 영향
닥나무 추출물이 함유된 Cosmeceuticals의 제조: 중심합성계획모델을 이용한 최적화
반응표면분석법을 이용한 미강으로부터 항산화 활성 및생리활성물질의 초음파 추출조건 최적화
마이크로웨이브 에너지를 이용한 폐식용유 원료 바이오디젤의 제조: Box-Behnken 설계를 이용한 최적화
학술지 이력
연월일 | 이력구분 | 이력상세 | 등재구분 |
---|---|---|---|
2023 | 평가예정 | 해외DB학술지평가 신청대상 (해외등재 학술지 평가) | |
2020-01-01 | 평가 | 등재학술지 유지 (해외등재 학술지 평가) | |
2013-12-01 | 평가 | SCOPUS 등재 (등재유지) | |
2011-01-01 | 평가 | 등재학술지 유지 (등재유지) | |
2010-02-19 | 학술지명변경 | 외국어명 : Journal of the Korean Industrial and Engineering Chemistry -> Applied Chemistry for Engineering | |
2009-04-28 | 학술지명변경 | 외국어명 : Jpurnal of the Korean Industrial and Engineering Chemistry -> Journal of the Korean Industrial and Engineering Chemistry | |
2009-01-01 | 평가 | 등재학술지 유지 (등재유지) | |
2007-01-01 | 평가 | 등재학술지 유지 (등재유지) | |
2005-01-01 | 평가 | 등재학술지 유지 (등재유지) | |
2002-01-01 | 평가 | 등재학술지 선정 (등재후보2차) | |
1999-07-01 | 평가 | 등재후보학술지 선정 (신규평가) |
학술지 인용정보
기준연도 | WOS-KCI 통합IF(2년) | KCIF(2년) | KCIF(3년) |
---|---|---|---|
2016 | 0.32 | 0.32 | 0.34 |
KCIF(4년) | KCIF(5년) | 중심성지수(3년) | 즉시성지수 |
0.33 | 0.33 | 0.45 | 0.05 |