RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      리튬 이온 배터리용 양극 및 음극 재료의 최근 동향 = Recent Advances in Cathode and Anode Materials for Lithium Ion Batteries

      한글로보기

      https://www.riss.kr/link?id=A105938032

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      리튬 이온 배터리는 휴대용 전자 제품, 전기 자동차 및 그리드 규모의 에너지 저장 장치 등과 같이 일상 생활에서다양한 용도로 널리 사용되고 있다. 최근 높은 에너지 밀도, 경량 및 저비용...

      리튬 이온 배터리는 휴대용 전자 제품, 전기 자동차 및 그리드 규모의 에너지 저장 장치 등과 같이 일상 생활에서다양한 용도로 널리 사용되고 있다. 최근 높은 에너지 밀도, 경량 및 저비용과 같은 상업적 요구를 만족하는 리튬이온 배터리 전극 소재 개발을 위하여 상당한 노력이 진행되어 오고 있다. 이 총설에서는 리튬 이온 배터리 양극 및음극 재료의 원리와 최근 연구 동향을 요약하였으며, 특히 전극 소재의 설계 및 고급 특성화 기술을 강조하였다.

      더보기

      참고문헌 (Reference)

      1 M. Chen, "Vanadium-doping of LiFePO4/carbon composite cathode materials synthesized with organophosphorus source" 167 : 278-286, 2015

      2 A. Sobkowiak, "Understanding and Controlling the Surface Chemistry of LiFeSO4F for an Enhanced Cathode Functionality" 25 : 3020-3029, 2013

      3 R. A. Huggins, "US Patent 4,436,796"

      4 Y. Idota, "Tin-based amorphous oxide: A High-capacity lithium-ion-storage material" 276 : 1395-1397, 1997

      5 P. Roy, "TiO2 nanotubes and their application in dye-sensitized solar cells" 2 : 45-59, 2010

      6 C. J. Wen, "Thermodynamic and Mass Transport Properties of “LiAl”" 126 : 2258-2266, 1979

      7 M. S. Whittingham, "The lithium intercalates of the transition metal dichalcogenides" 10 : 363-371, 1975

      8 J. Chen, "The hydrothermal synthesis and characterization of olivine and related compounds for electrochemical applications" 178 : 1676-1693, 2008

      9 B. M. L. Rao, "The Li/TiS2 cell with LiSCN electrolyte" 10 : 757-763, 1980

      10 E. N. Attia, "Tailoring the chemistry of blend copolymers boosting the electrochemical performance of Si-based anodes for lithium ion batteries" 5 : 24159-24167, 2017

      1 M. Chen, "Vanadium-doping of LiFePO4/carbon composite cathode materials synthesized with organophosphorus source" 167 : 278-286, 2015

      2 A. Sobkowiak, "Understanding and Controlling the Surface Chemistry of LiFeSO4F for an Enhanced Cathode Functionality" 25 : 3020-3029, 2013

      3 R. A. Huggins, "US Patent 4,436,796"

      4 Y. Idota, "Tin-based amorphous oxide: A High-capacity lithium-ion-storage material" 276 : 1395-1397, 1997

      5 P. Roy, "TiO2 nanotubes and their application in dye-sensitized solar cells" 2 : 45-59, 2010

      6 C. J. Wen, "Thermodynamic and Mass Transport Properties of “LiAl”" 126 : 2258-2266, 1979

      7 M. S. Whittingham, "The lithium intercalates of the transition metal dichalcogenides" 10 : 363-371, 1975

      8 J. Chen, "The hydrothermal synthesis and characterization of olivine and related compounds for electrochemical applications" 178 : 1676-1693, 2008

      9 B. M. L. Rao, "The Li/TiS2 cell with LiSCN electrolyte" 10 : 757-763, 1980

      10 E. N. Attia, "Tailoring the chemistry of blend copolymers boosting the electrochemical performance of Si-based anodes for lithium ion batteries" 5 : 24159-24167, 2017

      11 A. R. Armstrong, "Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries" 381 : 499-500, 1996

      12 Y. Nishida, "Synthesis and properties of gallium-doped LiNiO2 as the cathode material for lithium secondary batteries" 68 : 561-564, 1997

      13 M. Z. Kong, "Synthesis and electrochemical properties of a carbon-coated spinel Li4Ti5O12 anode material using soybean oil for lithium-ion batteries" 146 : 12-15, 2015

      14 Z. L. Gong, "Synthesis and electrochemical performance of Li2CoSiO4 as cathode material for lithium ion batteries" 174 : 524-527, 2007

      15 X. Dai, "Superior electrochemical performance of LiCoO2 electrodes enabled by conductive Al2O3-doped ZnO coating via magnetron sputtering" 298 : 114-122, 2015

      16 J. R. Dahn, "Structure and electrochemistry of Li1±yNiO2 and a new Li2NiO2 phase with the Ni (OH)2 structure" 44 : 87-97, 1990

      17 A. R. Armstrong, "Structural transformation on cycling layered Li(Mn1-yCoy)O2 cathode materials" 45 : 285-294, 1999

      18 T. Ohzuku, "Solid-state redox reactions of LiCoO2 (R3̅m) for 4 volt secondary lithium cells" 141 : 2972-2977, 1994

      19 J. Yang, "Small particle size multiphase Li-alloy anodes for lithium-ion batteries" 90 : 281-287, 1996

      20 V. H. Nguyen, "Silicon and its effect on the electrochemical properties of Li3V2(PO4)3 cathode material" 44 : 12504-12510, 2018

      21 W. Wang, "Silicon and carbon nanocomposite spheres with enhanced electrochemical performance for full cell lithium ion batteries" 7 : 44838-, 2017

      22 F. Schipper, "Review- recent advances and remaining challenges for lithium ion battery cathodes" 164 : A6220-A6228, 2017

      23 M. S. Park, "Preparation and ectrochemical properties of SnO2 nanowires for application in lithium-ion batteries" 119 : 764-767, 2007

      24 S. R. Gowda, "Oxidation state of cross-over manganese species on the graphite electrode of lithium-ion cells" 16 : 6898-6902, 2014

      25 G. Amatucci, "Optimization of Insertion Compounds Such as LiMn2O4 for Li-Ion Batteries" 149 : K31-K46, 2002

      26 J. C. Zheng, "Novel synthesis of LiVPO4F cathode material by chemical lithiation and postannealing" 202 : 380-383, 2012

      27 P. Axmann, "Nonstoichiometric LiFePO4: Defects and Related Properties" 21 : 1636-1644, 2009

      28 M. G. Jeong, "Nitrogen-doped carbon coated porous silicon as high performance anode material for lithium-ion batteries" 209 : 299-307, 2016

      29 S. Boyanov, "Nanostructured transition metal phosphide as negative electrode for lithium-ion batteries" 14 : 183-190, 2008

      30 M. Broussely, "LixNiO2, a promising cathode for rechargeable lithium batteries" 54 : 109-114, 1995

      31 M. M. Thackeray, "Lithium insertion into manganese spinels" 18 : 461-472, 1983

      32 M. Broussely, "Lithium insertion into host materials: the key to success for Li ion batteries" 45 : 3-22, 1999

      33 K. Persson, "Lithium diffusion in graphitic carbon" 1 : 1176-1180, 2010

      34 R. Domink, "Li2MnSiO4 as a potential Li-battery cathode material" 174 : 457-461, 2007

      35 N. Nitta, "Li-ion battery materials: present and future" 18 : 252-264, 2015

      36 C. M. Park, "Li-alloy based anode materials for Li secondary batteries" 39 : 3115-3141, 2010

      37 J. Li, "Insight into the capacity fading of layered lithium-rich oxides and its suppression via a film-forming electrolyte additive" 8 : 25794-25801, 2018

      38 M. Winter, "Insertion electrode materials for rechargeable lithium batteries" 10 : 725-763, 1998

      39 S. Huang, "Improvement of the high-rate discharge properties of LiCoO2 with the Ag additives" 148 : 72-77, 2005

      40 Y. Zhang, "Improved electrochemical performance of nitrogen doped TiO2-B nanowires as anode materials for Li-ion batteries" 7 : 12215-12224, 2015

      41 X. Zhang, "Improved cycle stability and high security of Li-B alloy anode for lithium-sulfur battery" 2 : 11660-11665, 2014

      42 C. C. Li, "Importance of binder compositions to the dispersion and electrochemical properties of water-based LiCoO2 cathodes" 227 : 204-210, 2013

      43 L. Yu, "Hydrothermal synthesis of SnO2 and SnO2@C nanorods and their application as anode materials in lithium-ion batteries" 3 : 17821-17826, 2013

      44 J. Liu, "Hollow Nanostructured Anode Materials for Li-Ion Batteries" 5 : 1525-1534, 2010

      45 조이 오콘, "High Energy Density Germanium Anodes for Next Generation Lithium Ion Batteries" 한국공업화학회 25 (25): 1-13, 2014

      46 A. VanderVen, "First-principles evidence for stage ordering in LixCoO2" 145 : 2149-2155, 1998

      47 Y. Liu, "Feasibility of lithium storage on graphene and its derivatives" 4 : 1737-1742, 2013

      48 X. Li, "Engineering nanostructured anodes via electrostatic spray deposition for high performance lithium ion battery application" 1 : 165-182, 2013

      49 X. Li, "Engineering nanostructured anodes via electrostatic spray deposition for high performance lithium ion battery application" 1 : 165-182, 2013

      50 T. Perez, "Electrochemical oxidation of cyanide on 3D Ti-RuO2 anode using a filter-press electrolyzer" 177 : 1-6, 2017

      51 J. N. Reimers, "Electrochemical and in situ x-ray diffraction studies of lithium intercalation in LixCoO2" 139 : 2091-2097, 1992

      52 M. S. Whittingham, "Electrical Energy Storage and Intercalation Chemistry" 192 : 1126-1127, 1976

      53 S. Myung, "Effects of Al doping on the microstructure of LiCoO2 cathode materials" 139 : 47-56, 2001

      54 A. K. Padhi, "Effect of Structure on the Fe3+/Fe2+ Redox Couple in Iron Phosphates" 144 : 1609-1613, 1997

      55 D. Y. Wan, "Effect of Metal (Mn, Ti) Doping on NCA Cathode Materials for Lithium Ion Batteries" 2018 : 8082502-, 2018

      56 S. Madhavi, "Effect of Cr dopant on the cathodic behavior of LiCoO2" 48 : 219-226, 2002

      57 S. P. Lin, "Effect of Al Addition on Formation of Layer-Structured LiNiO2" 167 : 97-106, 2002

      58 Y. Zhu, "Cross-linked porous α-Fe2O3 nanorods as high performance anode materials for lithium ion batteries" 6 : 97385-97390, 2016

      59 Y. Qin, "CoO-Co nanocomposite anode with enhanced electrochemical performance for lithium-ion batteries" 224 : 90-95, 2017

      60 J. Wang, "Characterization and electrochemical properties of carbon-coated Li4Ti5O12 prepared by a citric acid sol-gel method" 509 : 712-718, 2011

      61 T. Shiratsuchi, "Cathodic performance of LiMn1-xMxPO4 (M = Ti, Mg and Zr) annealed in an inert atmosphere" 54 : 3145-3151, 2009

      62 B. J. Landi, "Carbon nanotubes for lithium ion batteries" 2 : 638-654, 2009

      63 J. He, "Antimony-based materials as promising anodes for rechargeable lithium-ion and sodium-ion batteries" 2 : 437-455, 2018

      64 R. A. Huggins, "Advanced Batteries. Materials Science Aspects" Springer US 2009

      65 C. de las Casas, "A review of application of carbon nanotubes for lithium ion battery anode material" 208 : 74-85, 2012

      66 Q. Wang, "A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries" 52 : 1637-1640, 2016

      67 X. Han, "A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification" 251 : 38-54, 2014

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2013-12-01 평가 SCOPUS 등재 (등재유지) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-02-19 학술지명변경 외국어명 : Journal of the Korean Industrial and Engineering Chemistry -> Applied Chemistry for Engineering KCI등재
      2009-04-28 학술지명변경 외국어명 : Jpurnal of the Korean Industrial and Engineering Chemistry -> Journal of the Korean Industrial and Engineering Chemistry KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.32 0.32 0.34
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.33 0.33 0.45 0.05
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼