The interaction of positively charged N‐terminal histone tails with nucleosomal DNA plays an important role in chromatin assembly and regulation, modulating their susceptibility to post‐translational modifications and recognition by chromatin‐bi...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=O117648748
2021년
-
0044-8249
1521-3757
학술저널
6554-6561 [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
The interaction of positively charged N‐terminal histone tails with nucleosomal DNA plays an important role in chromatin assembly and regulation, modulating their susceptibility to post‐translational modifications and recognition by chromatin‐bi...
The interaction of positively charged N‐terminal histone tails with nucleosomal DNA plays an important role in chromatin assembly and regulation, modulating their susceptibility to post‐translational modifications and recognition by chromatin‐binding proteins. Here, we report residue‐specific 15N NMR relaxation rates for histone H4 tails in reconstituted nucleosomes. These data indicate that H4 tails are strongly dynamically disordered, albeit with reduced conformational flexibility compared to a free peptide with the same sequence. Remarkably, the NMR observables were successfully reproduced in a 2‐μs MD trajectory of the nucleosome. This is an important step toward resolving an apparent inconsistency where prior simulations were generally at odds with experimental evidence on conformational dynamics of histone tails. Our findings indicate that histone H4 tails engage in a fuzzy interaction with nucleosomal DNA, underpinned by a variable pattern of short‐lived salt bridges and hydrogen bonds, which persists at low ionic strength (0–100 mM NaCl).
15N relaxation data suggest that amino‐terminal histone H4 tails in reconstituted nucleosome are flexible. This result is rationalized by suitably designed MD simulations, showing that H4 tails are involved in a fuzzy interaction with nucleosomal DNA while retaining their disordered character.
Graphisches Inhaltsverzeichnis: Angew. Chem. 12/2021