Satellite images can be analyzed and used for a variety of purposes. In the future, satellite image analysis will become more important since the number of satellites launches, and the amount of satellite data increase every year. Under these circumst...
Satellite images can be analyzed and used for a variety of purposes. In the future, satellite image analysis will become more important since the number of satellites launches, and the amount of satellite data increase every year. Under these circumstances, there are some problems to be solved. One is the existence of low-resolution satellite images. To analyze the lower resolution of satellite images there are some technical issues such as reduction of noise, misclassification of object recognition. Therefore, high-resolution images are necessary. However, high-resolution satellite images are expensive, and its images may not be available in the past satellite images. Super-resolution which is introduced in image processing is a method to solve these problems. Convolutional neural network (CNN)-based methods are effective, and there is a need for models that can perform super-resolution with higher accuracy. In this paper, we propose a method for super-resolving satellite images, based on the improved the RCAN (residual channel attention network) model with SRM (style-based recalibration module). The proposed method improves the PSNR (peak signal to noise ratio) by 0.0181 dB compared to the conventional RCAN model.