RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Climate change transforms the functional identity of Mediterranean coralligenous assemblages

      한글로보기

      https://www.riss.kr/link?id=O106436847

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Quantifying changes in functional community structure driven by disturbance is critical to anticipate potential shifts in ecosystem functioning. However, how marine heatwaves (MHWs) affect the functional structure of temperate coral‐dominated communities is poorly understood. Here, we used five long‐term (> 10 years) records of Mediterranean coralligenous assemblages in a multi‐taxa, trait‐based analysis to investigate MHW‐driven changes in functional structure. We show that, despite stability in functional richness (i.e. the range of species functional traits), MHW‐impacted assemblages experienced long‐term directional changes in functional identity (i.e. their dominant trait values). Declining traits included large sizes, long lifespans, arborescent morphologies, filter‐feeding strategies or calcified skeletons. These traits, which were mostly supported by few sensitive and irreplaceable species from a single functional group (habitat‐forming octocorals), disproportionally influence certain ecosystem functions (e.g. 3D‐habitat provision). Hence, MHWs are leading to assemblages that are deficient in key functional traits, with likely consequences for the ecosystem functioning.
      Marine heatwaves (MHWs) are altering the structure of temperate coral‐dominated communities worlwide. Yet, the long‐term consequences for ecosystem functioning remain mostly uknown. Here, we quantified changes in functional structure of Mediterranean coralligenous assemblages by conducting a mulit‐taxa, trait‐based analysis. Our results show that MHWs are leading to assemblages that are deficient in key functional traits, with likely consequences for the ecosystem functioning.
      번역하기

      Quantifying changes in functional community structure driven by disturbance is critical to anticipate potential shifts in ecosystem functioning. However, how marine heatwaves (MHWs) affect the functional structure of temperate coral‐dominated commun...

      Quantifying changes in functional community structure driven by disturbance is critical to anticipate potential shifts in ecosystem functioning. However, how marine heatwaves (MHWs) affect the functional structure of temperate coral‐dominated communities is poorly understood. Here, we used five long‐term (> 10 years) records of Mediterranean coralligenous assemblages in a multi‐taxa, trait‐based analysis to investigate MHW‐driven changes in functional structure. We show that, despite stability in functional richness (i.e. the range of species functional traits), MHW‐impacted assemblages experienced long‐term directional changes in functional identity (i.e. their dominant trait values). Declining traits included large sizes, long lifespans, arborescent morphologies, filter‐feeding strategies or calcified skeletons. These traits, which were mostly supported by few sensitive and irreplaceable species from a single functional group (habitat‐forming octocorals), disproportionally influence certain ecosystem functions (e.g. 3D‐habitat provision). Hence, MHWs are leading to assemblages that are deficient in key functional traits, with likely consequences for the ecosystem functioning.
      Marine heatwaves (MHWs) are altering the structure of temperate coral‐dominated communities worlwide. Yet, the long‐term consequences for ecosystem functioning remain mostly uknown. Here, we quantified changes in functional structure of Mediterranean coralligenous assemblages by conducting a mulit‐taxa, trait‐based analysis. Our results show that MHWs are leading to assemblages that are deficient in key functional traits, with likely consequences for the ecosystem functioning.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼