RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      기능성 생체 재료의 합성과 응용 : 레이저 기반 바이오 프린팅의 연구 = Synthesis and application of functional biomaterials: a study of laser-based bioprinting

      한글로보기

      https://www.riss.kr/link?id=T16545171

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      최근 3D 바이오프린팅은 기존의 제작 방법으로는 표현하기 어려웠던 조직 구조의 정밀하고 세밀한 기계적 움직임을 통해 실제 장기 모델을 제작할 수 있는 기술로 기대되고 있다. 따라서 인...

      최근 3D 바이오프린팅은 기존의 제작 방법으로는 표현하기 어려웠던 조직 구조의 정밀하고 세밀한 기계적 움직임을 통해 실제 장기 모델을 제작할 수 있는 기술로 기대되고 있다. 따라서 인쇄성과 생체적합성이 향상된 레이저 기반 바이오프린팅 플랫폼에 대한 연구가 필요했다. 생체 적합성을 최우선으로 높은 인쇄성을 나타낼 수 있는 최적화 연구를 통해 이상적인 GelMA 기반 바이오 잉크와 최적화된 인쇄 플랫폼을 개발했습니다. 최적화 전략을 통해 구현된 바이오프린팅 플랫폼을 이용하여 프린팅된 GelMA 지지체 내의 세포 환경을 확인하였고, 본 연구에서 구축한 플랫폼의 효용성을 대량 배양을 통해 검증하였다.

      더보기

      다국어 초록 (Multilingual Abstract)

      Recently, 3D bioprinting is expected as a technology capable of producing an actual organ model through precise and detailed mechanical movement of a tissue structure, which was difficult to express with conventional fabrication methods. Therefore, it...

      Recently, 3D bioprinting is expected as a technology capable of producing an actual organ model through precise and detailed mechanical movement of a tissue structure, which was difficult to express with conventional fabrication methods. Therefore, it was necessary to study a laser-based bioprinting platform with improved printability and biocompatibility. We developed an ideal GelMA-based bio-ink and an optimized printing platform through research on optimization that can show high printability, with biocompatibility as the top priority. Using the bioprinting platform implemented through the optimization strategy, the cellular environment in the printed GelMA support was confirmed and the utility of the platform established in this study was verified through mass culture.

      더보기

      목차 (Table of Contents)

      • 제1장 서론 1
      • 제1절 Functional biomaterial: hydrogel 1
      • 1. Introduction of hydrogel 1
      • 2. History of hydrogel 1
      • 3. Natural polymer hydrogel 3
      • 제1장 서론 1
      • 제1절 Functional biomaterial: hydrogel 1
      • 1. Introduction of hydrogel 1
      • 2. History of hydrogel 1
      • 3. Natural polymer hydrogel 3
      • 제2절 Application of functional natural polymer hydrogel: bioprinting 8
      • 1. Introduction of bioprinting 8
      • 2. 3D bioprinting process 9
      • 3. Types of 3D bioprinting 11
      • 4. Application of 3D bioprinting 14
      • 제2장 Light/temperature sensitive hydrogel platform for stereolithographic printing 16
      • 제1절 서론 16
      • 제2절 재료 및 방법 19
      • 1. Materials 19
      • 2. Preparation of HBC-MA solution and hydrogel 19
      • 3. 1H nuclear magnetic resonance spectroscopy 20
      • 4. Fourier transform infrared spectroscopy 21
      • 5. Scanning electron microscopy 21
      • 6. Reversible phase transition characterization of hybrid-crosslinked hydrogel 21
      • 7. Rheological analysis 22
      • 8. Mechanical testing 22
      • 9. Swelling test 22
      • 10. Hydrogel degradation 23
      • 11. In vitro hydrogel crosslinking test 23
      • 12. Live/Dead fluorescence assay 24
      • 13. Cell counting kit-8 assay 25
      • 14. Preparation of 4D resin formulation 25
      • 15. SLA-3D printing setting 26
      • 16. Preparation of 3D models 27
      • 17. Morphological studies 27
      • 18. Swelling properties 27
      • 19. Mechanical properties 28
      • 20. Calculation of bending ratio of 4D structures 28
      • 제3절 결과 및 고찰 29
      • 1. 1H Nuclear magnetic resonance spectroscopy 29
      • 2. Fourier transform infrared spectroscopy 30
      • 3. Morphological analysis 31
      • 4. Reversible characteristics of HBC-MA hydrogel 33
      • 5. Rheological analysis 34
      • 6. Mechanical analysis 35
      • 7. Swelling test 37
      • 8. Degradation test 38
      • 9. Live/Dead fluorescence assay 40
      • 10. Cell counting kit-8 assay 41
      • 11. SLA-3D printing process and resin component 42
      • 12. 3D modeling for 4D structure 44
      • 13. Morphological analysis of printed hydrogel structure 45
      • 14. Swelling analysis of printed hydrogel structure 45
      • 15. Mechanical analysis of printed hydrogel structure 48
      • 16. Bending ratio of 4D structure evaluation 49
      • 제4절 결론 52
      • 제3장 Cell-laden gelatin methacryloyl bioink and laser-type printing platform for the biofabrication of centimeter-scale hydrogel scaffolds 53
      • 제1절 서론 53
      • 제2절 재료 및 방법 55
      • 1. Materials 55
      • 2. Cell culture 55
      • 3. Gelatin methacryloyl synthesis 56
      • 4. Preparation and fabrication of bioink 56
      • 5. Modeling 57
      • 6. 1H nuclear magnetic resonance spectroscopy 57
      • 7. UV-vis spectrometer measurement 57
      • 8. Photorheological analysis 58
      • 9. Printability test 58
      • 10. Live/Dead assay according to light exposure time 60
      • 11. Scanning electron microscopy 60
      • 12. Mechanical testing 60
      • 13. Cell adhesion 61
      • 14. Cell proliferation assay 61
      • 15. Statistical analysis 61
      • 제3절 결과 및 고찰 62
      • 1. 1H nuclear magnetic resonance spectroscopy 62
      • 2. GelMA bioink preparation for 3D bioprinting 64
      • 3. DLP 3D bioprinting optimization: photorheological analysis 65
      • 4. Scanning electron microscopy 69
      • 5. Cell adhesion in DLP printed GelMA scaffolds 71
      • 6. Cell viability in DLP printed GelMA scaffolds 73
      • 7. Cell proliferation analysis 75
      • 8. Application study 1: Ear-shaped DLP scaffold printing and cell culture 75
      • 9. Application study 2: Centimeter-scale scaffold for steak-type cultured meat 78
      • 제4절 결론 81
      • 제4장 Conclusion 83
      • 참고문헌 86
      • Abstract (in Korean) 104
      더보기

      참고문헌 (Reference) 논문관계도

      1 Khademhosseini , A. , J. P. Vacanti and R. Langer, "Progress in tissue engineering", 300 ( 5 ) : 64-71 ., 2009

      2 Knowlton , S. , S. Onal , C. H. Yu , J. J. Zhao and S. Tasoglu, "Bioprinting for cancer research", 33 ( 9 ) : 504-513 ., 2015

      3 Lee , K.Y . and D.J . Mooney ,, "Hydrogels for tissue engineering", 101 ( 7 ) : 1869-1880 ., 2001

      4 Hubbell , J . A, "Biomaterials in Tissue Engineering", 13 ( 6 ) : 565-576 ., 1995

      5 Murphy , S. V. and A. Atala, "3D bioprinting of tissues and organs", 32 ( 8 ) : 773-785 ., 2014

      6 Tabata , Y. and Y. Ikada, "Protein release from gelatin matrices .", 31 ( 3 ) : 287- 301, 1998

      7 Gungor-Ozkerim , P. S. , I. Inci , Y. S. Zhang , A. Khademhosseini and M. R. Dokmeci, "Bioinks for 3D bioprinting : an overview", 6 ( 5 ) : 915-946 ., 2018

      8 Gopinathan , J. and I. Noh, "Recent trends in bioinks for 3D printing", 22 ( 1 ) : 1-15 ., 2018

      9 Seol , Y. J. , H. W. Kang , S. J. Lee , A. Atala and J. J. Yoo, "Bioprinting technology and its applications", 46 ( 3 ) : 342-348 ., 2014

      10 Koch , L. , A. Deiwick , S. Schlie , S. Michael , M. Gruene , V. Coger , D. Zychlinski , A. Schambach , K. Reimers , P. M. Vogt and B. Chichkov, "Skin tissue generation by laser cell printing", 109 ( 7 ) : 1855-1863 ., 2012

      1 Khademhosseini , A. , J. P. Vacanti and R. Langer, "Progress in tissue engineering", 300 ( 5 ) : 64-71 ., 2009

      2 Knowlton , S. , S. Onal , C. H. Yu , J. J. Zhao and S. Tasoglu, "Bioprinting for cancer research", 33 ( 9 ) : 504-513 ., 2015

      3 Lee , K.Y . and D.J . Mooney ,, "Hydrogels for tissue engineering", 101 ( 7 ) : 1869-1880 ., 2001

      4 Hubbell , J . A, "Biomaterials in Tissue Engineering", 13 ( 6 ) : 565-576 ., 1995

      5 Murphy , S. V. and A. Atala, "3D bioprinting of tissues and organs", 32 ( 8 ) : 773-785 ., 2014

      6 Tabata , Y. and Y. Ikada, "Protein release from gelatin matrices .", 31 ( 3 ) : 287- 301, 1998

      7 Gungor-Ozkerim , P. S. , I. Inci , Y. S. Zhang , A. Khademhosseini and M. R. Dokmeci, "Bioinks for 3D bioprinting : an overview", 6 ( 5 ) : 915-946 ., 2018

      8 Gopinathan , J. and I. Noh, "Recent trends in bioinks for 3D printing", 22 ( 1 ) : 1-15 ., 2018

      9 Seol , Y. J. , H. W. Kang , S. J. Lee , A. Atala and J. J. Yoo, "Bioprinting technology and its applications", 46 ( 3 ) : 342-348 ., 2014

      10 Koch , L. , A. Deiwick , S. Schlie , S. Michael , M. Gruene , V. Coger , D. Zychlinski , A. Schambach , K. Reimers , P. M. Vogt and B. Chichkov, "Skin tissue generation by laser cell printing", 109 ( 7 ) : 1855-1863 ., 2012

      11 Mandrycky , C. , Z. Wang , K. Kim and D.-H. Kim, "3D bioprinting for engineering complex tissues", 34 ( 4 ) : 422-434 ., 2016

      12 Wendt , D. , L. J. C. van Loon and W. D. Marken Lichtenbelt, "Thermoregulation during Exercise in the Heat .", 37 ( 8 ) : 669-682 ., 2007

      13 Rinaudo , M., "Chitin and chitosan : Properties and applications", 31 ( 7 ) : 603- 632, 2006

      14 Nie , J. , Q. Gao , Y. Wang , J. Zeng , H. Zhao , Y . Sun , J. Shen , H. Ramezani , Z. Fu and Z. Liu, "Vessel on a chip with hydrogel based microfluidics", 14 ( 45 ) : 1802368 ., 2018

      15 Genova , T. , I. Roato , M. Carossa , C. Motta , D. Cavagnetto and F. Mussano, "Advances on Bone Substitutes through 3D Bioprinting", 21 ( 19 ) ., 2020

      16 Liu , W. , Y. S. Zhang , M. A. Heinrich , F. De Ferrari , H. L. Jang , S. M. Bakht , M. M. Alvarez , J. Yang , Y. C. Li and G. Trujillo de Santiago, "Rapid continuous multimaterial extrusion bioprinting", 29 ( 3 ) : 1604630 ., 2017

      17 Guvendiren , M. , H. D. Lu and J . A. Burdick, "Shearthinning hydrogels for biomedical applications .", 8 ( 2 ) : 260-272 ., 2012

      18 Engler , A. J. , S. Sen , H. L. Sweeney and D. E. Discher, "Matrix elasticity directs stem cell lineage specification", 126 ( 4 ) : 677-689 ., 2006

      19 Kuwajima , T. , H. Yoshida and K. Hayashi, "Graft polymerization of methyl methacrylate onto gelatin .", 20 ( 4 ) : 967-974 ., 1976

      20 Zhu , B. , C. Wei , C. Hou , Q. Gu and D. Chen, "Preparation and characterization of hydroxybutyl chitosan .", 10 ( 1 ) ., 2010

      21 Wu , G.-H. and S.-h. Hsu, "Review : Polymeric-Based 3D Printing for Tissue Engineering", 35 ( 3 ) : 285-292, 2015

      22 Heinrich , M. A. , W. Liu , A. Jimenez , J. Yang , A. Akpek , X. Liu , Q. Pi , X. Mu , N. Hu , R. M. Schiffelers , J. Prakash , J. Xie and Y. S. Zhang, "3D Bioprinting : from Benches to Translational Applications .", 15 ( 23 ) : 1805510 ., 2019

      23 Mironov , V. , V. Kasyanov and R. R. Markwald, "Organ printing : from bioprinter to organ biofabrication line", 22 ( 5 ) : 667-673 ., 2011

      24 Choi , C. , J.-P. Nam and J.-W. Nah, "Application of chitosan and chitosan derivatives as biomaterials", 33 : 1- 10, 2016

      25 Kunze , W. A . A. and J . B. Furness, "THE ENTERIC NERVOUS SYSTEM AND REGULATION OF INTESTINAL MOTILITY", 61 ( 1 ) : 117-142 ., 1999

      26 Ueno , H. , T. Mori and T. Fujinaga, "Topical formulations and wound healing applications of chitosan .", 52 ( 2 ) : 105-115 ., 2001

      27 Chimene , D. , K. K. Lennox , R. R. Kaunas and A. K. Gaharwar, "Advanced Bioinks for 3D Printing : A Materials Science Perspective", 44 ( 6 ) : 2090-2102 ., 2016

      28 Ding , X. , H. Zhao , Y. Li , A. L. Lee , Z. Li , M. Fu , C. Li , Y. Y. Yang and P. Yuan, "Synthetic peptide hydrogels as 3D scaffolds for tissue engineering", 160 : 78-104 ., 2020

      29 Ozbolat , I. T., "Bioprinting scale-up tissue and organ constructs for transplantation", 33 ( 7 ) : 395-400 ., 2015

      30 Catoira , M. C. , L. Fusaro , D. Di Francesco , M. Ramella and F. Boccafoschi, "Overview of natural hydrogels for regenerative medicine applications", 30 ( 10 ) : 115 ., 2019

      31 Burdick , J . A. and G. Vunjak-Novakovic, "Engineered microenvironments for controlled stem cell differentiation", 15 ( 2 ) : 205- 219 ., 2009

      32 Lee , S. C. , I. K. Kwon and K. Park, "Hydrogels for delivery of bioactive agents : A historical perspective", 65 ( 1 ) : 17-20 ., 2013

      33 Li , X. and Y. Chen, "Micro-scale feature fabrication using immersed surface accumulation .", 28, 2017

      34 Ozbolat , I. T. and M. Hospodiuk, "Current advances and future perspectives in extrusion-based bioprinting", 76 : 321-343 ., 2016

      35 Ahmed , E.M., "Hydrogel : Preparation , characterization , and applications : A review", 6 ( 2 ) : 105-121, 2015

      36 Zhang , X.-Z . and C.-C. Chu, "Preparation of thermosensitive PNIPAAm hydrogels with superfast response .", 3 ) : 350-351 ., 2004

      37 He , P. , S. S. Davis and L. Illum, "In vitro evaluation of the mucoadhesive properties of chitosan microspheres", 166 ( 1 ) : 75-88 ., 1998

      38 Valmikinathan , C. M. , V. J. Mukhatyar , A. Jain , L. Karumbaiah , M. Dasari and R. V. Bellamkonda, "Photocrosslinkable chitosan based hydrogels for neural tissue engineering .", 8 ( 6 ) : 1964-1976 ., 2012

      39 Han , M.-E. , B. J. Kang , S.-H. Kim , H. D. Kim and N. S. Hwang, "Gelatin-based extracellular matrix cryogels for cartilage tissue engineering", 45 : 421-429 ., 2017

      40 Shih , H. , A. K. Fraser and C.-C. Lin, "Interfacial thiolene photoclick reactions for forming multilayer hydrogels .", 5 ( 5 ) : 1673-1680 ., 2013

      41 Lee , J. M. and W. Y. Yeong, "Design and Printing Strategies in 3D Bioprinting of Cell-Hydrogels : A Review", 5 ( 22 ) : 2856-2865 ., 2016

      42 Hosseinnejad , M. and S. M. Jafari, "Evaluation of different factors affecting antimicrobial properties of chitosan", 85 : 467-475 ., 2016

      43 Zhang , X.-Z. , X.-D. Xu , S.-X . Cheng and R.-X . Zhuo, "Strategies to improve the response rate of thermosensitive PNIPAAm hydrogels .", 4 ( 3 ) : 385-391 ., 2008

      44 Buwalda , S. J. , K. W. M. Boere , P. J. Dijkstra , J. Feijen , T. Vermonden and W. E. Hennink, "Hydrogels in a historical perspective : From simple networks to smart materials", 190 : 254-273, 2014

      45 Yoon , H. J. , S. R. Shin , J. M. Cha , S.-H. Lee , J.-H. Kim , J. T. Do , H. Song and H. Bae, "Cold Water Fish Gelatin Methacryloyl Hydrogel for Tissue Engineering Application", 11 ( 10 ) : e0163902 ., 2016

      46 Costa , M. and J . B. Furness, "The peristaltic reflex : An analysis of the nerve pathways and their pharmacology", 294 ( 1 ) : 47-60 ., 1976

      47 Wang , Q. Q. , M. Kong , Y . An , Y. Liu , J. J. Li , X. Zhou , C. Feng , J. Li , S. Y. Jiang , X. J. Cheng and X. G. Chen, "Hydroxybutyl chitosan thermo-sensitive hydrogel : a potential drug delivery system", 48 ( 16 ) : 5614-5623 ., 2013

      48 Van Den Bulcke , A. I. , B. Bogdanov , N. De Rooze , E. H. Schacht , M. Cornelissen and H. Berghmans, "Structural and rheological properties of methacrylamide modified gelatin hydrogels .", 1 ( 1 ) : 31-38 ., 2000

      49 Azuma , K. , T. Osaki , S. Minami and Y. Okamoto, "Anticancer and Anti-Inflammatory Properties of Chitin and Chitosan Oligosaccharides .", 6 ( 1 ) ., 2015

      50 Harrison , I. P. and F. Spada, "Hydrogels for Atopic Dermatitis and Wound Management : A Superior Drug Delivery Vehicle", 10 ( 2 ) : 71 ., 2018

      51 Jeon , H. , K. Kang , S. A . Park , W. D. Kim , S. S. Paik , S. H. Lee , J. Jeong and D. Choi, "Generation of Multilayered 3D Structures of HepG2 Cells Using a Bio-printing Technique .", 11 ( 1 ) : 121-128 ., 2017

      52 Liu , J. , L. Li , H. Suo , M. Yan , J. Yin and J. Fu, "3D printing of biomimetic multi-layered GelMA/nHA scaffold for osteochondral defect repair", 171 : 107708 ., 2019

      53 Xiao , Y. , S. Ahadian and M. Radisic, "Biochemical and Biophysical Cues in Matrix Design for Chronic and Diabetic Wound Treatment", 23 ( 1 ) : 9-26 ., 2016

      54 Sun , J. , X. Chen , J. Guo , Q. Shi , Z. Xie and X. Jing, "Synthesis and self-assembly of a novel Y-shaped copolymer with a helical polypeptide arm .", 50 ( 2 ) : 455-461 ., 2009

      55 Fukumura , D. and R. K. Jain, "Tumor microenvironment abnormalities : causes , consequences , and strategies to normalize", 101 ( 4 ) : 937-949 ., 2007

      56 Nuseir , A. , M. M. d. Hatamleh , A. Alnazzawi , M. Al-Rabab'ah , B. Kamel and E. Jaradat, "Direct 3D Printing of Flexible Nasal Prosthesis : Optimized Digital Workflow from Scan to Fit", 28 ( 1 ) : 10- 14 ., 2019

      57 Zhou , H. Y. , L. J. Jiang , P. P. Cao , J . B. Li and X. G. Chen, "Glycerophosphate-based chitosan thermosensitive hydrogels and their biomedical applications .", 117 : 524-536 ., 2015

      58 Bhattarai , N. , H. R. Ramay , J. Gunn , F. A. Matsen and M. Zhang, "PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release .", 103 ( 3 ) : 609-624 ., 2005

      59 Fedorovich , N. E. , H. M. Wijnberg , W. J. Dhert and J. Alblas, "Distinct tissue formation by heterogeneous printing of osteo- and endothelial progenitor cells .", 17 ( 15-16 ) : 2113-2121 ., 2011

      60 Das , D. and S. Pal, "Modified biopolymer-dextrin based crosslinked hydrogels : application in controlled drug delivery", 5 ( 32 ) : 25014-25050 ., 2015

      61 Panduranga Rao , K., "Recent developments of collagenbased materials for medical applications and drug delivery systems", 7 ( 7 ) : 623-645 ., 1996

      62 Yuan , M. , B. Bi , J. Huang , R. Zhuo and X. Jiang, "Thermosensitive and photocrosslinkable hydroxypropyl chitin-based hydrogels for biomedical applications .", 192 : 10-18 ., 2018

      63 Wang , Z. , Z. Tian , F. Menard and K. Kim, "Comparative study of gelatin methacrylate hydrogels from different sources for biofabrication applications", 9 ( 4 ) : 044101 ., 2017

      64 Wheeler , J. , J . Woods , M. Cox , R. Cantrell , F. Watkins and R. Edlich, "Evolution of hydrogel polymers as contact lenses , surface coatings , dressings , and drug delivery systems", 6 ( 3-4 ) : 207-217 ., 1996

      65 Do , A.-V. , K. S. Worthington , B . A. Tucker and A. K. Salem, "Controlled drug delivery from 3D printed twophoton polymerized poly ( ethylene glycol ) dimethacrylate devices", 552 ( 1-2 ) : 217-224 ., 2018

      66 Bao , Z. , C. Xian , Q. Yuan , G. Liu and J. Wu, "Natural Polymer-Based Hydrogels with Enhanced Mechanical Performances : Preparation , Structure , and Property", 8 ( 17 ) : 1900670 ., 2019

      67 Seo , J. W. , J. H. Moon , G. Jang , W. K. Jung , Y. H. Park , K. T. Park , S. R. Shin , Y.-S. Hwang and H. Bae, "Cell- Laden Gelatin Methacryloyl Bioink for the Fabrication of Z-Stacked Hydrogel Scaffolds for Tissue Engineering", 12 ( 12 ) ., 2020

      68 Rahimi , S. , S. Khoee and M. Ghandi, "Development of photo and pH dual crosslinked coumarin-containing chitosan nanoparticles for controlled drug release", 201 : 236-245, 2018

      69 Li , C. , L. Sheng , G. Sun and L. Wang, "The application of ultraviolet-induced photo-crosslinking in edible film preparation and its implication in food safety", 131 : 109791 ., 2020

      70 Shigemasa , Y. , H. Matsuura , H. Sashiwa and H. Saimoto, "Evaluation of different absorbance ratios from infrared spectroscopy for analyzing the degree of deacetylation in chitin", 18 ( 3 ) : 237-242 ., 1996

      71 Kadry , H. , S. Wadnap , C. Xu and F. Ahsan, "Digital light processing ( DLP ) 3D-printing technology and photoreactive polymers in fabrication of modifiedrelease tablets", 135 : 60-67 ., 2019

      72 Rizwan , M. , S. W. Chan , P. A. Comeau , T. L. Willett and E. K. Yim, "Effect of sterilization treatment on mechanical properties , biodegradation , bioactivity and printability of GelMA hydrogels .", 15 ( 6 ) : 065017 ., 2020

      73 Lin , S.-B. , Y.-C. Lin and H.-H. Chen, "Low molecular weight chitosan prepared with the aid of cellulase , lysozyme and chitinase : Characterisation and antibacterial activity", 116 ( 1 ) : 47-53 ., 2009

      74 Rizwan , M. , R. Yahya , A. Hassan , M. Yar , A. D. Azzahari , V. Selvanathan , F. Sonsudin and C. N. Abouloula, "pH Sensitive Hydrogels in Drug Delivery : Brief History , Properties , Swelling , and Release Mechanism , Material Selection and Applications", 9 ( 4 ) ., 2017

      75 Garbern , J. , A. Hoffman and P. Stayton, "Injectable pHand Temperature-Responsive Poly ( Nisopropylacrylamide- co-propylacrylic acid ) Copolymers for Delivery of Angiogenic Growth Factors", 11 : 1833-1839 ., 2010

      76 Garbern , J. C. , A. S. Hoffman and P. S. Stayton, "Injectable pH- and Temperature-Responsive Poly ( N-isopropylacrylamide-co-propylacrylic acid ) Copolymers for Delivery of Angiogenic Growth Factors", 11 ( 7 ) : 1833-1839 ., 2010

      77 Seo , J. W. , S. R. Shin , Y. J . Park and H. Bae, "Hydrogel Production Platform with Dynamic Movement Using Photo-Crosslinkable/Temperature Reversible Chitosan Polymer and Stereolithography 4D Printing Technology", 17 ( 4 ) : 423-431 ., 2020

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼