RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      색상 민감성 파라미터를 활용한 비전 카메라 기반 이미지 판별 솔루션 = A Vision Camera-Based Image Classification Solution Utilizing Color Sensitivity Parameters

      한글로보기

      https://www.riss.kr/link?id=A109586809

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      We designed a template utilizing smartphones and vision cameras for image data collection and derived key parameters suitable for state classification based on color information. To achieve this, we selected the mean and standard deviation of the G value in the RGB channel, the L value in the HSL model, and Brightness as the core analytical elements. Additionally, to quantitatively analyze the relationship between color information and state classification, we applied the Pearson correlation coefficient, establishing a reliable classification criterion. This image state classification methodology is based on an approach that maximizes color sensitivity at the pixel level. Its validity was verified through an image processing procedure using smartphones and vision cameras with a blue filter. Based on this research, we developed a structured program capable of effective state classification and integrated it into a vision camera system, ensuring its practical applicability.
      번역하기

      We designed a template utilizing smartphones and vision cameras for image data collection and derived key parameters suitable for state classification based on color information. To achieve this, we selected the mean and standard deviation of the G va...

      We designed a template utilizing smartphones and vision cameras for image data collection and derived key parameters suitable for state classification based on color information. To achieve this, we selected the mean and standard deviation of the G value in the RGB channel, the L value in the HSL model, and Brightness as the core analytical elements. Additionally, to quantitatively analyze the relationship between color information and state classification, we applied the Pearson correlation coefficient, establishing a reliable classification criterion. This image state classification methodology is based on an approach that maximizes color sensitivity at the pixel level. Its validity was verified through an image processing procedure using smartphones and vision cameras with a blue filter. Based on this research, we developed a structured program capable of effective state classification and integrated it into a vision camera system, ensuring its practical applicability.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼