RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Micro‐cone textures for improved light in‐coupling and retroreflection‐inspired light trapping at the front surface of solar modules

      한글로보기

      https://www.riss.kr/link?id=O119840935

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Micron‐scale textures at the front surface of solar modules have been reported to improve the current generation by both enhancing light in‐coupling as well as by reducing light out‐coupling via back‐reflection, similar to the retroreflective ...

      Micron‐scale textures at the front surface of solar modules have been reported to improve the current generation by both enhancing light in‐coupling as well as by reducing light out‐coupling via back‐reflection, similar to the retroreflective effect. Whereas the general working principle and advantages of these textures have been described previously, here, the interplay of the reflection properties of different substrates with the enhancement effects is analyzed for textures of conical geometry. The study takes into consideration the incident light of arbitrary angle of incidence as well as the overall energy yield. Supported by optical simulations, periodic micro‐cone textures were optimized and prototyped based on direct laser writing and a scalable replication process. Micron‐scale textures with cones of various aspect ratios were examined on mono‐crystalline silicon (c‐Si) solar cells; an optimum aspect ratio of 0.73 was identified. This moderate aspect ratio is suitable for large‐scale replication, while showing near‐zero surface reflection and excellent light trapping. An increase in energy yield of up to 8% was calculated for the case of micro‐cone textures at the front surface of commercial alkaline‐etched c‐Si solar cells. Moreover, the excellent optical properties of the micro‐cone textures were highlighted by improving the power conversion efficiency (PCE) of a Cu(In,Ga)Se2 (CIGS) thin‐film solar cells from 20.2% to 20.9%. A comparable PCE improvement has been achieved by conventional MgF2 antireflection coatings, but the angular stability and in turn the energy yield of the micro‐cone textures is much higher.
      Micron‐scale textures applied to the front surface of solar modules enhance the transmission to the underlying solar cells and trap light reflected from the solar cells. A systematic experimental study of conical micro‐textures is performed, focusing on the aspect ratio. The interaction between the texture and solar cell is investigated in detail, and the angle‐stable performance enhancement on different photovoltaic devices is demonstrated.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼