RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Improved squalene production through increasing lipid contents in Saccharomyces cerevisiae

      한글로보기

      https://www.riss.kr/link?id=O116606421

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Squalene, a valuable acyclic triterpene, can be used as a chemical commodity for pharmacology, flavor, and biofuel industries. Microbial production of squalene has been of great interest due to its limited availability, and increasing prices extracted from animal and plant tissues. Here we report genetic perturbations that synergistically improve squalene production in Saccharomyces cerevisiae. As reported previously, overexpression of a truncated HMG‐CoA reductase 1 (tHMG1) led to the accumulation 20‐fold higher squalene than a parental strain. In order to further increase squalene accumulation in the tHMG1 overexpressing yeast, we introduced genetic perturbations—known to increase lipid contents in yeast—to enhance squalene accumulation as lipid body is a potential storage of squalene. Specifically, DGA1 coding for diacylglycerol acyltranferase was overexpressed to enhance lipid biosynthesis, and POX1 and PXA2 coding for acyl‐CoA oxidase and a subunit of peroxisomal ABC transporter were deleted to reduce lipid β‐oxidation. Simultaneous overexpression of tHMG1 and DGA1 coding for rate‐limiting enzymes in the mevalonate and lipid biosynthesis pathways led to over 250‐fold higher squalene accumulation than a control strain. However, deletion of POX1 and PXA2 in the tHMG1 overexpressing yeast did not improve squalene accumulation additionally. Fed‐batch fermentation of the tHMG1 and DGA1 co‐overexpressing yeast strain resulted in the production of squalene at a titer of 445.6 mg/L in a nitrogen‐limited minimal medium. This report demonstrates that increasing storage capacity for hydrophobic compounds can enhance squalene production, suggesting that increasing lipid content is an effective strategy to overproduce a hydrophobic molecule in yeast.
      This study focused on the genetic perturbations eliciting improved lipid production and enhanced squalene accumulation in Saccharomyces cerevisiae. The engineered strains, with simultaneous overexpression of tHMG1 and DGA1 coding for rate‐limiting enzymes in the mevalonate and lipid biosynthesis pathways, showed over 250‐fold higher squalene accumulation than a control strain. The results indicated that increasing storage capacity for hydrophobic compounds enhances squalene production.
      번역하기

      Squalene, a valuable acyclic triterpene, can be used as a chemical commodity for pharmacology, flavor, and biofuel industries. Microbial production of squalene has been of great interest due to its limited availability, and increasing prices extracted...

      Squalene, a valuable acyclic triterpene, can be used as a chemical commodity for pharmacology, flavor, and biofuel industries. Microbial production of squalene has been of great interest due to its limited availability, and increasing prices extracted from animal and plant tissues. Here we report genetic perturbations that synergistically improve squalene production in Saccharomyces cerevisiae. As reported previously, overexpression of a truncated HMG‐CoA reductase 1 (tHMG1) led to the accumulation 20‐fold higher squalene than a parental strain. In order to further increase squalene accumulation in the tHMG1 overexpressing yeast, we introduced genetic perturbations—known to increase lipid contents in yeast—to enhance squalene accumulation as lipid body is a potential storage of squalene. Specifically, DGA1 coding for diacylglycerol acyltranferase was overexpressed to enhance lipid biosynthesis, and POX1 and PXA2 coding for acyl‐CoA oxidase and a subunit of peroxisomal ABC transporter were deleted to reduce lipid β‐oxidation. Simultaneous overexpression of tHMG1 and DGA1 coding for rate‐limiting enzymes in the mevalonate and lipid biosynthesis pathways led to over 250‐fold higher squalene accumulation than a control strain. However, deletion of POX1 and PXA2 in the tHMG1 overexpressing yeast did not improve squalene accumulation additionally. Fed‐batch fermentation of the tHMG1 and DGA1 co‐overexpressing yeast strain resulted in the production of squalene at a titer of 445.6 mg/L in a nitrogen‐limited minimal medium. This report demonstrates that increasing storage capacity for hydrophobic compounds can enhance squalene production, suggesting that increasing lipid content is an effective strategy to overproduce a hydrophobic molecule in yeast.
      This study focused on the genetic perturbations eliciting improved lipid production and enhanced squalene accumulation in Saccharomyces cerevisiae. The engineered strains, with simultaneous overexpression of tHMG1 and DGA1 coding for rate‐limiting enzymes in the mevalonate and lipid biosynthesis pathways, showed over 250‐fold higher squalene accumulation than a control strain. The results indicated that increasing storage capacity for hydrophobic compounds enhances squalene production.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼