In all mammalian species, progesterone is essential to both the preparation for, and maintenance of, pregnancy. The $20{\alpha}$-hydroxysteroid dehydrogenase ($20{\alpha}$-HSD) enzyme predominantly converts progesterone into its biologically inactive ...
In all mammalian species, progesterone is essential to both the preparation for, and maintenance of, pregnancy. The $20{\alpha}$-hydroxysteroid dehydrogenase ($20{\alpha}$-HSD) enzyme predominantly converts progesterone into its biologically inactive form $20{\alpha}$-hydroxyprogesterone, thereby regulating its activity. Thus, to directly assess sexual maturation in the MediKinetics $micropig^{(R)}$, we analyzed the concentration of the steroid hormones progesterone and estradiol during the estrous cycle. Our results show that the progesterone level exhibited by the analyzed $micorpig^{(R)}$ was low at the beginning of the estrous cycle, and then abruptly increased to $30.32{\pm}10.0ng/mL$ and $46.37{\pm}11.0ng/mL$ by days 9 and 11 of the cycle, respectively. It reached the highest level $55.87{\pm}3.5ng/mL$ on day 13 of the estrous cycle, before decreasing to $46.58{\pm}13.1ng/mL$ and $10.0{\pm}7.6ng/mL$ by days 15 and 17 of the cycle, respectively. In contrast, the estradiol level was shown to be highest ($27.13{\pm}11.2ng/mL$) at the initiation of the estrous cycle, after which point it decreased to $13.29{\pm}6.5ng/mL$ and $10.94{\pm}5.9ng/mL$ by days 4 and 5 of the estrous cycle, respectively. By day 17 of the estrous cycle, the estradiol level decreased to $4.13{\pm}7.6ng/mL$. We anticipate that these results will provide useful information to enable the study of human ovulation and reproductive physiology using the MediKinetics $micoripig^{(R)}$ as a model system. We recommend further investigation to elucidate the functional mechanisms underlying the regulation of sexual maturation in the MediKinetics $micropig^{(R)}$.