RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      Extensive Analysis of Gate Leakage Current in Nano-Scale Multi-gate MOSFETs

      한글로보기

      https://www.riss.kr/link?id=A108386595

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Excessive gate leakage is crucial for nanoscale metal oxide semiconductor field-effect transistors (MOSFETs), resulting in unnecessary static power dissipation and switching delay. Herein, we used three-dimensional modeling to understand the gate leak...

      Excessive gate leakage is crucial for nanoscale metal oxide semiconductor field-effect transistors (MOSFETs), resulting in unnecessary static power dissipation and switching delay. Herein, we used three-dimensional modeling to understand the gate leakage behavior of various nanoscale MOSFETs, including fin field-effect transistor and gate all around MOSFET. We used Wentzel–Kramers–Brillouin approximation to compute the direct quantum tunneling-based gate leakage current. We performed all computations of quantum transport for gate leakage current through the non-equilibrium Greens function approach. Among the MOSFET structures under study, the gate all around MOSFET demonstrates the most profound gate leakage deviation with the gate material work function and oxide thickness. A detailed analysis of the dependence of the gate leakage on the metal work function is presented, and the charge density model is used to explain this dependence. This work explores the possibilities of controlling the gate leakage through gate material variations in different nanoscale multi-gate MOSFET architectures.

      더보기

      참고문헌 (Reference) 논문관계도

      1 L.M. Lin, Springer 894-897, 2008

      2 S. I. Garduño, 27 : 846-, 2014

      3 F. A. Chaves, 59 : 2589-, 2012

      4 P. J. Price, 3 : 364-, 2010

      5 W. C. Lee, 48 : 1366-, 2001

      6 M. Pecovska-Gjorgjevich, 872-875, 2004

      7 G. Brown, 7 : 20-, 2004

      8 A. Goel, 111 : 152924-, 2019

      9 A. Dixit, 12610 (12610): 1-, 2020

      10 P. K. Singh, 126 : 166-, 2020

      1 L.M. Lin, Springer 894-897, 2008

      2 S. I. Garduño, 27 : 846-, 2014

      3 F. A. Chaves, 59 : 2589-, 2012

      4 P. J. Price, 3 : 364-, 2010

      5 W. C. Lee, 48 : 1366-, 2001

      6 M. Pecovska-Gjorgjevich, 872-875, 2004

      7 G. Brown, 7 : 20-, 2004

      8 A. Goel, 111 : 152924-, 2019

      9 A. Dixit, 12610 (12610): 1-, 2020

      10 P. K. Singh, 126 : 166-, 2020

      11 S. Panigrahy, 32 : 3522-, 2021

      12 H. Najafi-Ashtiani, 455 : 373-, 2018

      13 S. Li, 39 : 121-, 2020

      14 L. Selegård, 704 : 121743-, 2021

      15 F. Palumbo, 30 : 1900657-, 2020

      16 Y. Sun, 42 : 023102-, 2021

      17 A. K. Rana, 10 : 222-, 2011

      18 K. Tamersit, 128 : 252-, 2019

      19 P. Saha, 130 : 194-, 2019

      20 S. Ghosh, 90 : 204-, 2019

      21 V. M. Srivastava, 42 : 1124-, 2011

      22 A. Goel, 126 : 1-, 2020

      23 A. Goel, 95 : 299-, 2021

      24 A. Goel, 50 : 108-, 2021

      25 S. Rewari, 1 : 2019-, 2019

      26 K. W. Huang, 109 : 104933-, 2020

      27 V. Narendar, 10 : 2865-, 2018

      28 H. Uribe-Vargas, 29 : 15761-, 2018

      29 A. Goel, 21 : 16731-, 2021

      30 A. Goel, 1 : 337-, 2018

      31 A. Goel, 26 : 1697-, 2020

      32 G. Thriveni, 6 : 085062-, 2019

      33 T. I. Lee, 40 : 502-, 2019

      34 Y. T. Shi, 8 : 15-, 2020

      35 D. G. Kim, 9 : 1572-, 2021

      36 A. Hashemi, 28 : 13313-, 2017

      37 H.K. Tyagi, Springer 902-907, 2008

      38 D. Ranka, 2 : 11-, 2011

      39 J. Robertson, 88 : 1-, 2015

      40 X. Hong, "Solution Processed Metal Oxide Thin Films for Electronic Applications" Elsevier 31-39, 2020

      41 "Silvaco ATLAS User’s Manual" Silvaco, Inc 2016

      42 B. El-Kareh, "Silicon Analog Components" Springer 2020

      43 J. Tonfat, "Proceesings of the 2016 26th International Workshop on Power and Timing Modeling" 107-, 2017

      44 T. Hiramoto, "Nanoscale Silicon Devices" CRC Press 53-81, 2016

      45 M.B. Lin, "Introduction to VLSI Systems: A Logic, Circuit, and System Perspective" CRC Press 2011

      46 A. Goel, "IEEE 16th India Council International Conference" 2019

      47 N. Pratap, "High-k Gate Dielectric Materials:Applications with Advanced Metal Oxide Semiconductor Field Effect Transistors" CRC Press 31-57, 2020

      48 T.S. Arulananth, "High-K Mater. Multi Gate FET Devices" CRC Press 176-, 2021

      49 S. Siddiqui, "Handbook Thin fi lm deposition" Elsevier 107-145, 2018

      50 W. Xiong, "FinFET and Other Multi-Gate Transistors" Springer 49-101, 2008

      51 N.S. Kim, "Computer"

      52 A.B. Bhattacharyya, "Compact Mosfet Models for VLSI Design" Wiley 2010

      53 S. Chaudhury, "Carbon Nanotube and Nanowires for Future Semiconductor Devices Applications" Elsevier Inc 2018

      54 W.M. Haynes, "CRC Handbook of Chemistry and Physics" CRC Press 2016

      55 C. Zhao, "C. Past, Present Future" Elsevier 69-103, 2018

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼