RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      Metal Surface Defect Detection and Classification using EfficientNetV2 and YOLOv5

      한글로보기

      https://www.riss.kr/link?id=A108245811

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Detection and classification of steel surface defects are critical for product quality control in the steel industry. However, due to its low accuracy and slow speed, the traditional approach cannot be effectively used in a production line. The current, widely used algorithm (based on deeplearning) has an accuracy problem, and there are still rooms for development. This paper proposes a method of steel surface defect detection combining EfficientNetV2 for image classification and YOLOv5 as an object detector. Shorter training time and high accuracy are advantages of this model. Firstly, the image input into EfficientNetV2 model classifies defect classes and predicts probability of having defects. If the probability of having a defect is less than 0.25, the algorithm directly recognizes that the sample has no defects. Otherwise, the samples are further input into YOLOv5 to accomplish the defect detection process on the metal surface. Experiments show that proposed model has good performance on the NEU dataset with an accuracy of 98.3%. Simultaneously, the average training speed is shorter than other models.
      번역하기

      Detection and classification of steel surface defects are critical for product quality control in the steel industry. However, due to its low accuracy and slow speed, the traditional approach cannot be effectively used in a production line. The curre...

      Detection and classification of steel surface defects are critical for product quality control in the steel industry. However, due to its low accuracy and slow speed, the traditional approach cannot be effectively used in a production line. The current, widely used algorithm (based on deeplearning) has an accuracy problem, and there are still rooms for development. This paper proposes a method of steel surface defect detection combining EfficientNetV2 for image classification and YOLOv5 as an object detector. Shorter training time and high accuracy are advantages of this model. Firstly, the image input into EfficientNetV2 model classifies defect classes and predicts probability of having defects. If the probability of having a defect is less than 0.25, the algorithm directly recognizes that the sample has no defects. Otherwise, the samples are further input into YOLOv5 to accomplish the defect detection process on the metal surface. Experiments show that proposed model has good performance on the NEU dataset with an accuracy of 98.3%. Simultaneously, the average training speed is shorter than other models.

      더보기

      참고문헌 (Reference)

      1 박미소 ; 윤홍주 ; 김나경 ; 김보람, "적조 탐지를 위한 기계학습 모델 비교 연구" 한국전자통신학회 16 (16): 1363-1371, 2021

      2 Z. Ge, "Yolox : Exceeding yolo series in 2021"

      3 김민수 ; 문미경 ; 한창희, "YOLO와 OCR 알고리즘에 기반한 시각 장애우를 위한 유통기한 알림 시스템" 한국전자통신학회 16 (16): 1329-1338, 2021

      4 이군호 ; 문미경, "YOLO알고리즘을 활용한 시각장애인용 식사보조 시스템 개발" 한국전자통신학회 16 (16): 1001-1010, 2021

      5 H. Zhang, "Varifocalnet : An iou-aware dense object detector" 8514-8523, 2021

      6 G. Jocher, "Ultralytics/yolov5: v3.1 – Bug Fixes and Performance Improvements"

      7 M. Everingham, "The Pascal Visual Object Classes Challenge: A Retrospective" 111 : 98-136, 2014

      8 C. M. Wang, "Surface quality detection of cold-rolled strip based on BP neural network" 6 : 106-108, 2007

      9 Y. Yang, "Surface defect detection of steel strip based on CNN" 2019 : 25-29, 2019

      10 Ch. Wang, "Scaled-yolov4 : Scaling cross stage partial network" 13029-13038, 2021

      1 박미소 ; 윤홍주 ; 김나경 ; 김보람, "적조 탐지를 위한 기계학습 모델 비교 연구" 한국전자통신학회 16 (16): 1363-1371, 2021

      2 Z. Ge, "Yolox : Exceeding yolo series in 2021"

      3 김민수 ; 문미경 ; 한창희, "YOLO와 OCR 알고리즘에 기반한 시각 장애우를 위한 유통기한 알림 시스템" 한국전자통신학회 16 (16): 1329-1338, 2021

      4 이군호 ; 문미경, "YOLO알고리즘을 활용한 시각장애인용 식사보조 시스템 개발" 한국전자통신학회 16 (16): 1001-1010, 2021

      5 H. Zhang, "Varifocalnet : An iou-aware dense object detector" 8514-8523, 2021

      6 G. Jocher, "Ultralytics/yolov5: v3.1 – Bug Fixes and Performance Improvements"

      7 M. Everingham, "The Pascal Visual Object Classes Challenge: A Retrospective" 111 : 98-136, 2014

      8 C. M. Wang, "Surface quality detection of cold-rolled strip based on BP neural network" 6 : 106-108, 2007

      9 Y. Yang, "Surface defect detection of steel strip based on CNN" 2019 : 25-29, 2019

      10 Ch. Wang, "Scaled-yolov4 : Scaling cross stage partial network" 13029-13038, 2021

      11 H. Wang, "Research on surface defect detection of metal sheet and strip based on multi-level feature FasterR-CNN" 2021 (2021): 262-269, 2021

      12 Z. Yang, "Reppoints : Point set representation for object detection" 9657-9666, 2019

      13 A. Paszke, "Pytorch: An imperative style, high-performance deep learning library" 8026-8037, 2019

      14 X. Zhou, "Probabilistic two-stage detection"

      15 K. Wang, "Panet: Few-shot image semantic segmentation with prototype alignment" 9197-9206, 2019

      16 X. Zhou, "Objects as points"

      17 T. Y. Lin, "Microsoft coco: Common objects in context" 740-755, 2014

      18 Y. Xu, "Metal Surface Defect Detection Using Modified YOLO" 14 : 257-, 2021

      19 M. Versaci, "Innovative fuzzy techniques for characterizing defects inultrasonic non-destructive evaluation" 2014 : 201-232, 2014

      20 M. Vannocci, "Flatness defect detection and classification in hot rolled steel strips using convolutional neural networks" 11507 : 220-234, 2019

      21 Z. Tian, "Fcos : Fully convolutional one-stage object detection" 9627-9636, 2019

      22 Sh. Ren, "Faster R-CNN:Towards real-time object detection with region proposal networks" 28 : 91-99, 2015

      23 R. Wei, "Enhanced faster Region Convolutional Neural Networks for Steel Surface Defect Detection" 60 (60): 539-545, 2020

      24 M. Tan, "EfficientNetV2: Smaller Models and Faster Training" PMLR 139 : 10096-10106, 2021

      25 M. Tan, "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" PMLR 97 : 6105-6114, 2020

      26 D. He, "Design of multi-scale receptive field convolutional neural network for surface inspection of hot-rolled steels" 89 : 12-20, 2019

      27 X. Lv, "Deep metallic surface defect detection : the new benchmark and detection network" 20 (20): 1562-, 2020

      28 C. Y. Wang, "CSPNet: A new backbone that can enhance learning capability of CNN" 390-391, 2020

      29 S. Wang, "Automatic Detection and Classification of Steel Surface Defect Using Deep Convolutional Neural Networks" 11 (11): 388-, 2021

      30 Y. He, "An end-to-end steel surface defect detection approach via fusing multiple hierarchical features" 69 (69): 1493-1504, 2020

      31 K. Song, "A noise robust method based on completed localbinary patterns for hot-rolled steel strip surface defects" 285 (285): 858-864, 2013

      32 R. Xu, "A Forest Fire Detection System Based on Ensemble Learning" 12 (12): 217-, 2021

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2016-01-01 평가 등재후보학술지 유지 (계속평가) KCI등재후보
      2015-01-01 평가 등재후보학술지 유지 (계속평가) KCI등재후보
      2013-01-01 평가 등재후보 1차 FAIL (등재후보1차) KCI등재후보
      2012-01-01 평가 등재후보학술지 유지 (기타) KCI등재후보
      2011-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2009-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      2007-08-27 학회명변경 한글명 : 학국전자통신학회 -> 한국전자통신학회
      영문명 : The Korea Insitute of Electronic Communication Sciences -> The Korea Institute of Electronic Communication Sciences
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.89 0.89 0.79
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.77 0.76 0.698 0.27
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼