1 박미소 ; 윤홍주 ; 김나경 ; 김보람, "적조 탐지를 위한 기계학습 모델 비교 연구" 한국전자통신학회 16 (16): 1363-1371, 2021
2 Z. Ge, "Yolox : Exceeding yolo series in 2021"
3 김민수 ; 문미경 ; 한창희, "YOLO와 OCR 알고리즘에 기반한 시각 장애우를 위한 유통기한 알림 시스템" 한국전자통신학회 16 (16): 1329-1338, 2021
4 이군호 ; 문미경, "YOLO알고리즘을 활용한 시각장애인용 식사보조 시스템 개발" 한국전자통신학회 16 (16): 1001-1010, 2021
5 H. Zhang, "Varifocalnet : An iou-aware dense object detector" 8514-8523, 2021
6 G. Jocher, "Ultralytics/yolov5: v3.1 – Bug Fixes and Performance Improvements"
7 M. Everingham, "The Pascal Visual Object Classes Challenge: A Retrospective" 111 : 98-136, 2014
8 C. M. Wang, "Surface quality detection of cold-rolled strip based on BP neural network" 6 : 106-108, 2007
9 Y. Yang, "Surface defect detection of steel strip based on CNN" 2019 : 25-29, 2019
10 Ch. Wang, "Scaled-yolov4 : Scaling cross stage partial network" 13029-13038, 2021
1 박미소 ; 윤홍주 ; 김나경 ; 김보람, "적조 탐지를 위한 기계학습 모델 비교 연구" 한국전자통신학회 16 (16): 1363-1371, 2021
2 Z. Ge, "Yolox : Exceeding yolo series in 2021"
3 김민수 ; 문미경 ; 한창희, "YOLO와 OCR 알고리즘에 기반한 시각 장애우를 위한 유통기한 알림 시스템" 한국전자통신학회 16 (16): 1329-1338, 2021
4 이군호 ; 문미경, "YOLO알고리즘을 활용한 시각장애인용 식사보조 시스템 개발" 한국전자통신학회 16 (16): 1001-1010, 2021
5 H. Zhang, "Varifocalnet : An iou-aware dense object detector" 8514-8523, 2021
6 G. Jocher, "Ultralytics/yolov5: v3.1 – Bug Fixes and Performance Improvements"
7 M. Everingham, "The Pascal Visual Object Classes Challenge: A Retrospective" 111 : 98-136, 2014
8 C. M. Wang, "Surface quality detection of cold-rolled strip based on BP neural network" 6 : 106-108, 2007
9 Y. Yang, "Surface defect detection of steel strip based on CNN" 2019 : 25-29, 2019
10 Ch. Wang, "Scaled-yolov4 : Scaling cross stage partial network" 13029-13038, 2021
11 H. Wang, "Research on surface defect detection of metal sheet and strip based on multi-level feature FasterR-CNN" 2021 (2021): 262-269, 2021
12 Z. Yang, "Reppoints : Point set representation for object detection" 9657-9666, 2019
13 A. Paszke, "Pytorch: An imperative style, high-performance deep learning library" 8026-8037, 2019
14 X. Zhou, "Probabilistic two-stage detection"
15 K. Wang, "Panet: Few-shot image semantic segmentation with prototype alignment" 9197-9206, 2019
16 X. Zhou, "Objects as points"
17 T. Y. Lin, "Microsoft coco: Common objects in context" 740-755, 2014
18 Y. Xu, "Metal Surface Defect Detection Using Modified YOLO" 14 : 257-, 2021
19 M. Versaci, "Innovative fuzzy techniques for characterizing defects inultrasonic non-destructive evaluation" 2014 : 201-232, 2014
20 M. Vannocci, "Flatness defect detection and classification in hot rolled steel strips using convolutional neural networks" 11507 : 220-234, 2019
21 Z. Tian, "Fcos : Fully convolutional one-stage object detection" 9627-9636, 2019
22 Sh. Ren, "Faster R-CNN:Towards real-time object detection with region proposal networks" 28 : 91-99, 2015
23 R. Wei, "Enhanced faster Region Convolutional Neural Networks for Steel Surface Defect Detection" 60 (60): 539-545, 2020
24 M. Tan, "EfficientNetV2: Smaller Models and Faster Training" PMLR 139 : 10096-10106, 2021
25 M. Tan, "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" PMLR 97 : 6105-6114, 2020
26 D. He, "Design of multi-scale receptive field convolutional neural network for surface inspection of hot-rolled steels" 89 : 12-20, 2019
27 X. Lv, "Deep metallic surface defect detection : the new benchmark and detection network" 20 (20): 1562-, 2020
28 C. Y. Wang, "CSPNet: A new backbone that can enhance learning capability of CNN" 390-391, 2020
29 S. Wang, "Automatic Detection and Classification of Steel Surface Defect Using Deep Convolutional Neural Networks" 11 (11): 388-, 2021
30 Y. He, "An end-to-end steel surface defect detection approach via fusing multiple hierarchical features" 69 (69): 1493-1504, 2020
31 K. Song, "A noise robust method based on completed localbinary patterns for hot-rolled steel strip surface defects" 285 (285): 858-864, 2013
32 R. Xu, "A Forest Fire Detection System Based on Ensemble Learning" 12 (12): 217-, 2021