RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      고심도 암반의 스폴링 평가에 대한 사례 분석 및 광주 스폴링 모델링

      한글로보기

      https://www.riss.kr/link?id=A106817490

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      전 세계적으로 지하의 고심도화는 다양한 시설 개발의 목적으로 관심도가 높은 상황이다. 고심도 지하공간의 개발은 암반의 구조적 안정성이 바탕이 되어야 한다. 고심도 지하공간에서는 ...

      전 세계적으로 지하의 고심도화는 다양한 시설 개발의 목적으로 관심도가 높은 상황이다. 고심도 지하공간의 개발은 암반의 구조적 안정성이 바탕이 되어야 한다. 고심도 지하공간에서는 스폴링이 구조적 안정성에 영향을 미치는 것으로 알려져 있다. 스폴링을 예측하기 위해서 많은 연구자들은 터널 주변에서 발생하는 응력상태, 암반상태 및 암종에 따라 제안하였다. 또한, 현지에서 측정된 결과와 FLAC, EXAMINE, UDEC, Insight 2D, FRACOD 등의 컴퓨터 모델링을 이용하여 스폴링 해석 방법에 대한 검증이 수행되었다. 캐나다 URL(Underground Research Tunnel)에서는 스폴링 현상에 대한 정확한 예측을 위해 CWFS(Cohesion Weakening Frictional Strengthening)모델을 제안하고 이를 비교 분석하였다. CWFS 모델은 스폴링 현상을 예측하는데 신뢰도 높은 방법으로 확인되었다. 본 연구에서는 고심도 암반에서의 스폴링 발생에 대한 사례들을 분석하고 스폴링 발생조건과 CWFS 모델의 예측 결과를 비교하였다. 이를 통해 고심도 조건에서의 광주를 대상으로 스폴링 예측에 대한 적용성을 검토하고자 하였다.

      더보기

      다국어 초록 (Multilingual Abstract)

      Globally, the deepening depth in the underground is a situation of the high interest for a purpose of the development of various facilities. The development of deep underground space should be based on the structural stability of rocks. Spalling is kn...

      Globally, the deepening depth in the underground is a situation of the high interest for a purpose of the development of various facilities. The development of deep underground space should be based on the structural stability of rocks. Spalling is known to have an impact on the structural stability degradation in deep underground space. As an attempt to predict spalling, many researchers have proposed predicted conditions in accordance with stress states which occur around the tunnel, rock conditions, and types of rock. In addition, the analysis on spalling method has been verified by using computer modeling such as FLAC, EXAMINE, Insight 2D, UDEC and FRACOD, along with in-situ measurement results. In Canada URL (Underground Research Tunnel), CWFS model (Cohesion Weakening Frictional Strengthening) was used to precisely predict for the state of spalling, comparing spalling modeling. CWFS model has been identified as a reliable method for predicting such phenomena. This study aims to analyze several cases of spalling, and then make a comparison between the conditions for spalling occurrence and the predicted results of model CWFS. With this, it investigates the applicability of prediction of spalling, targeting pillar under deep depth condition.

      더보기

      목차 (Table of Contents)

      • ABSTRACT
      • 초록
      • 1. 서론
      • 2. 유도응력으로 인한 스폴링 파괴
      • 3. 스폴링 모델링
      • ABSTRACT
      • 초록
      • 1. 서론
      • 2. 유도응력으로 인한 스폴링 파괴
      • 3. 스폴링 모델링
      • 4. 광주 스폴링 예측 및 사례
      • 5. 광주의 스폴링 모델링
      • 6. 결론
      • REFERENCES
      더보기

      참고문헌 (Reference)

      1 Andersson, C.J, "Äspo Pillar Stability Experiment, Final Report, Rock Mass Response to Coupled Mechanical Thermal Loading" Äspo Hard Rock Laboratory 2007

      2 Hoek, E., "Underground excavations in rock" The Institution of Mining and Metallurgy 527-, 1980

      3 Von Kimmelman, M. R., "The use of computer applications at BCL limited in planning pillar extractino and the design of mining layouts" 53-63, 1984

      4 Hatzor, Y. H., "The influence of grain size and porosity on crack initiation stress and critical flaw length in dolomites" 34 : 805-816, 1997

      5 Martin, C. D., "The Strength of Massive Lac du Bonnet Granite Around Underground Openings" University of Manitoba 1993

      6 Martin, C. D., "Stress instability and design of underground excavations" 40 : 1027-1047, 2003

      7 Edelbro, C., "Strength, fallouts and numerical modelling of hard rock masses" Lulea University of Technology 2008

      8 Haied, A., "Strain localization in Fontainebleau sandstone" 5 : 239-253, 2000

      9 Hedley, D. G. F., "Stope-and-pillar design for the Elliot Lake Uranium Mines" 65 : 37-44, 1972

      10 Tjader, E, "Shafts and rock mass strength" Lulea University of Technology 2018

      1 Andersson, C.J, "Äspo Pillar Stability Experiment, Final Report, Rock Mass Response to Coupled Mechanical Thermal Loading" Äspo Hard Rock Laboratory 2007

      2 Hoek, E., "Underground excavations in rock" The Institution of Mining and Metallurgy 527-, 1980

      3 Von Kimmelman, M. R., "The use of computer applications at BCL limited in planning pillar extractino and the design of mining layouts" 53-63, 1984

      4 Hatzor, Y. H., "The influence of grain size and porosity on crack initiation stress and critical flaw length in dolomites" 34 : 805-816, 1997

      5 Martin, C. D., "The Strength of Massive Lac du Bonnet Granite Around Underground Openings" University of Manitoba 1993

      6 Martin, C. D., "Stress instability and design of underground excavations" 40 : 1027-1047, 2003

      7 Edelbro, C., "Strength, fallouts and numerical modelling of hard rock masses" Lulea University of Technology 2008

      8 Haied, A., "Strain localization in Fontainebleau sandstone" 5 : 239-253, 2000

      9 Hedley, D. G. F., "Stope-and-pillar design for the Elliot Lake Uranium Mines" 65 : 37-44, 1972

      10 Tjader, E, "Shafts and rock mass strength" Lulea University of Technology 2018

      11 Fonseka, G.M, "Scanning electron microscope and acoustic emission studies of crack development in rocks" 22 : 273-289, 1985

      12 Ortlepp, W. D., "Rock Fracture and Rockbursts - An Illustrative Study" The South African Institute of Mining and Metallurgy 1997

      13 Barton, N., "Risk of shear failure and extensional failure around over-stressed excavations in brittle rock" 9 : 210-225, 2017

      14 Synn, J. H., "Regional distribution pattern and geo-historical transition of In-situ stress fields in the Korean peninsula" 13 (13): 457-469, 2013

      15 Eberhardt, E., "Quantifying progressive prepeak brittle fracture damage in rock during uniaxial compression" 36 : 361-380, 1999

      16 Pritchard, C.J, "Progressive pillar failure and rock bursting at Denison Mine" 111-116, 1993

      17 Martin, C.D, "Presentation slide of Brittle rock failure and tunnelling in high stressed rock, Tunnel construction brittle rock"

      18 Martin, D, "Preliminary assessment of potential underground stability(wedge and spalling) at Forsmark"

      19 Lei, X., "On the spatiotemporal distribution of acoustic emissions in two granitic rocks under triaxial compression: the role of pre-existing cracks" 27 : 1997-2000, 2000

      20 Atsushi, S., "Numerical investigation into pillar failure induced by time-dependent skin degradation" 27 : 591-597, 2017

      21 Hajiabdolmajid, V., "Modelling brittle failure of rock" 39 : 731-741, 2002

      22 Rafiei Renani, H., "Modeling the progressive failure of hard rock pillars" 74 : 71-81, 2018

      23 Katz, O., "Microfracturing, damage and failure of brittle granites" 109 : 2004

      24 Bieniawski, Z. T., "Mechanisms of brittle fracture of rock: Part I: Theory of the fracture process; Part II: experimental studies;Part III: fracture under tension and under long term loading" 395-430, 1967

      25 Pettitt, W.S, "Investigating the mechanics of microcrack damage induced under true-triaxial unloading" 1998

      26 Sjöberg, J., "Input to orepass design - a numerical study" 571-584, 2015

      27 Walton, G., "Inproving continuum models for excavation in rock messes under high stress through an enhanced understanding of post-yield dilatancy" Queen’s University 2014

      28 Cai, M., "In-situ Rock Spalling Strength near Excavation Boundaries" 47 : 659-675, 2014

      29 Martin, C. D., "Hoek-Brown parameters for predicting the depth of brittle failure around tunnels" 36 : 136-151, 1999

      30 Lunder, P. J, "Hard rock pillar strength estimation an applied empirical approach" University of British Columbia 1994

      31 Cai, M., "Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations" 44 : 33-847, 2004

      32 Carter, B. J., "Fitting strength criteria to intact rock" 9 : 73-81, 1991

      33 Martino, J. B., "Excavation-induced damage studies at the underground research laboratory" 41 : 1413-1426, 2004

      34 Lan, H., "Evolution of in situ rock mass damage induced by mechanical-thermal loading" 46 : 153-168, 2013

      35 Martin, C. D., "Estimating the potential for spalling around a deep nuclear waste repository in crystalline rock" 46 : 219-228, 2009

      36 Brace, W. F., "Dilatancy in the fracture of crystalline rocks" 71 : 53-, 1966

      37 Krauland, N., "Determining pillar strength from pillar failure observation" 8 : 34-40, 1987

      38 Wagner, H., "Determination of the complete load-deformation characteristics of coal pillars" 1076-1081, 1974

      39 Cheon, D. S., "Damage-controlled test to determine the input parameters for CWFS model and its application to simulation of brittle failure" 9 : 263-273, 2007

      40 Illston, J. M., "Concrete, timber and metals" Van Nostrand Reinhold 663-, 1979

      41 Eberhardt, E., "Brittle rock fracture, progressive damage in uniaxial compression" University of Saskatchewan 1998

      42 Castro, L., "Analysis of stress-induced damage initiation around deep openings excavated in a moderately jointed brittle rockmass" University of Toronto 1996

      43 Park, H. S., "Analysis of pillar stability for ground vibration and flyrock impact in underground mining blasting" Chosun University 2010

      44 Pestman, B. J., "An acoustic emission study of damage development and stress-memory effects in sandstone" 33 : 585-593, 1996

      45 Singh, D. P., "A study of time-dependent properties, other physical properties of rocks" University of Melbourne 1970

      46 Kim, J.A, "A numerical study on the brittle failure of rock and rock mass" Suwon University 2005

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2019-08-21 학회명변경 영문명 : Korean Society for Rock Mechanics -> Korean Society for Rock Mechanics and Rock Engineering KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-05-07 학회명변경 영문명 : Korean Society For Rock Mechanics -> Korean Society for Rock Mechanics KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2003-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2002-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2000-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.47 0.47 0.41
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.37 0.36 0.547 0.3
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼