RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Greenhouse Climate Fuzzy Adaptive Control Considering Energy Saving

      한글로보기

      https://www.riss.kr/link?id=A105037091

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper proposes a fuzzy adaptive control approach to solve greenhouse climate control problem. Theaim is to ensure the controlled environmental variables to track their desired trajectories so as to create a favorableenvironment for crop growth. I...

      This paper proposes a fuzzy adaptive control approach to solve greenhouse climate control problem. Theaim is to ensure the controlled environmental variables to track their desired trajectories so as to create a favorableenvironment for crop growth. In this method, a feedback linearization technique is first introduced to derive thecontrol laws of heating, fogging and CO2 injection, then to compensate for the saturation of the actuators, a fuzzylogic system (FLS) is used to approximate the differences between controller outputs and actuator outputs due toactuator constraints. A robust control term is introduced to eliminate the impact of external disturbances and modeluncertainty, and finally, Lyapunov stability analysis is performed to guarantee the convergence of the closed-loopsystem. Taking into account the fact that the crop is usually insensitive to the change of the environment insidethe greenhouse during a short time interval, a certain amount of tracking error of the environmental variables isusually acceptable, which means that the environmental variables need only be driven into the corresponding targetintervals. In this case, an energy-saving management mechanism is designed to reduce the energy consumption asmuch as possible. The simulation results illustrate the effectiveness of the proposed control scheme.

      더보기

      참고문헌 (Reference)

      1 E. J. van Henten, "Time-scale decomposition of an optimal control problem in greenhouse climate management" 17 : 88-96, 2009

      2 M. Azaza, "Smart greenhouse fuzzy logic based control system enhanced with wireless data monitoring" 61 : 297-307, 2016

      3 I. Improna, "Simple greenhouse climate model as a design tool for greenhouses in tropical lowland" 98 : 79-89, 2007

      4 H. Wang, "Robust decentralized adaptive neural control for a class of nonaffine nonlinear large-scale systems with unknown dead zones" 2014 (2014): 1-10, 2014

      5 G. Van Straten, "Optimal control of greenhouse cultivation" CRC Press Inc 2010

      6 M. Y. E. Ghoumari, "Nonlinear constrained MPC : Real-time implementation of greenhouse air temperature control" 49 : 345-356, 2005

      7 S. Zeng, "Nonlinear adaptive PID control for greenhouse environment based on RBF network" 12 (12): 5328-5348, 2012

      8 A. Ram´lłrez-Arias, "Multiobjective hierarchical control architecture for greenhouse crop growth" 48 : 490-498, 2012

      9 H. P. Kläring, "Model-based control of CO2 concentration in greenhouses at ambient levels increases cucumber yield" 143 (143): 208-216, 2007

      10 N. Sigrimis, "H∞-PI controller tuning for greenhouse temperature control" 485-490, 1999

      1 E. J. van Henten, "Time-scale decomposition of an optimal control problem in greenhouse climate management" 17 : 88-96, 2009

      2 M. Azaza, "Smart greenhouse fuzzy logic based control system enhanced with wireless data monitoring" 61 : 297-307, 2016

      3 I. Improna, "Simple greenhouse climate model as a design tool for greenhouses in tropical lowland" 98 : 79-89, 2007

      4 H. Wang, "Robust decentralized adaptive neural control for a class of nonaffine nonlinear large-scale systems with unknown dead zones" 2014 (2014): 1-10, 2014

      5 G. Van Straten, "Optimal control of greenhouse cultivation" CRC Press Inc 2010

      6 M. Y. E. Ghoumari, "Nonlinear constrained MPC : Real-time implementation of greenhouse air temperature control" 49 : 345-356, 2005

      7 S. Zeng, "Nonlinear adaptive PID control for greenhouse environment based on RBF network" 12 (12): 5328-5348, 2012

      8 A. Ram´lłrez-Arias, "Multiobjective hierarchical control architecture for greenhouse crop growth" 48 : 490-498, 2012

      9 H. P. Kläring, "Model-based control of CO2 concentration in greenhouses at ambient levels increases cucumber yield" 143 (143): 208-216, 2007

      10 N. Sigrimis, "H∞-PI controller tuning for greenhouse temperature control" 485-490, 1999

      11 Y. Kaneda, "Greenhouse environmental control system based on SW-SVR" 60 : 860-869, 2015

      12 P. Salgado, "Greenhouse climate hierarchical fuzzy modeling" 13 : 613-628, 2005

      13 J. P. Coelho, "Greenhouse air temperature predictive control using the particle swarm optimisation algorithm" 49 (49): 330-344, 2005

      14 E. J. Van Henten, "Greenhouse Climate Management: An Optimal Approach," the DLO Institute of Agriculture and Environmental Engineering 1994

      15 J. L. Igaa, "Effect of air density variations on greenhouse temperature model" 47 : 855-867, 2008

      16 F. Tap, "Economics-based Optimal Control of Greenhouse Tomato Crop Production" Wageningen Agricultural University, Institute of Agricultural and Environmental Engineering and Physics 2000

      17 O. Kornera, "Decision support for dynamic greenhouse climate control strategies" 60 (60): 18-30, 2008

      18 N. Sigrimis, "Control advances in agriculture and the environment" 21 (21): 8-12, 2001

      19 A. Setiawan, "Application of pseudo-derivative-feedback algorithm in greenhouse air temperature control" 26 (26): 283-302, 2000

      20 X. Dong, "Adaptive variable structure fuzzy neural identification and control for a class of MIMO nonlinear system" 350 (350): 1221-1247, 2013

      21 M. M. Arefi, "Adaptive output feedback neural network control of uncertain non-affine systems with unknown control direction" 351 (351): 4302-4316, 2014

      22 M. M. Arefi, "Adaptive neural stabilizing controller for a class of mismatched uncertain nonlinear systems by state and output feedback" 45 (45): 1587-1596, 2015

      23 Y. Liu, "Adaptive fuzzy outputfeedback tracking control for a class of switched stochastic nonlinear time-delay systems" 35 (35): 2762-2788, 2016

      24 T. Boulard, "A simple greenhouse climate control model incorporating effects on ventilation and evaporative cooling" 65 : 145-157, 1993

      25 G. D. Pasgianos, "A nonlinear feedback technique for greenhouse environmental control" 40 : 153-177, 2003

      26 C. Stanghellini, "A model of humidity and its applications in a greenhouse" 76 : 129-148, 1995

      27 D. Piscia, "A method of coupling CFD and energy balance simulations to study humidity control in unheated greenhouses" 115 : 129-141, 2015

      28 N. A. Sigrimis, "A linear model for greenhouse control" 39 : 253-261, 1996

      29 A. P. Montoya, "A hybrid-controlled approach for maintaining nocturnal greenhouse temperature : Simulation study" 123 : 116-124, 2016

      30 M. Azaza, "A fuzzy decoupling control of greenhouse climate" 40 : 2805-2812, 2015

      31 J. Chen, "A control method for agricultural greenhouses heating based on computational fluid dynamics and energy prediction model" 141 : 106-118, 2015

      32 유성진, "A Simple Fuzzy-approximation-based Adaptive Control of Uncertain Unmanned Helicopters" 제어·로봇·시스템학회 14 (14): 340-349, 2016

      33 B. H. E. Vanthoor, "A Model-based Greenhouse Design Method" Wageningen Agricultural University 2011

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-12-29 학회명변경 한글명 : 제어ㆍ로봇ㆍ시스템학회 -> 제어·로봇·시스템학회 KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-10-29 학회명변경 한글명 : 제어ㆍ자동화ㆍ시스템공학회 -> 제어ㆍ로봇ㆍ시스템학회
      영문명 : The Institute Of Control, Automation, And Systems Engineers, Korea -> Institute of Control, Robotics and Systems
      KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.35 0.6 1.07
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.88 0.73 0.388 0.04
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼