RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      Deep learning–based drone detection with SWIR cameras

      한글로보기

      https://www.riss.kr/link?id=A107231521

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Small unmanned aerial vehicles, commonly known as drones, and their related industries are improving in leaps and bounds. The global drone industry began with a military focus and subsequently progressed into commercial applications. Consequently, abuse cases linked to drone technology are gradually increasing. Following the technical advancement in drone technology, studies on drone detection and prevention are actively ongoing. This is one such study. Radar-based drone detection that combines various existing sensors or equipment has shortcomings, including high costs and specialist operations. Thus, this paper proposes a drone-detection system that uses only thermal images from short-wavelength infrared (SWIR) cameras. The YOLO model, which is widely used for object recognition, was used for the drone-detection algorithm. Labels were attached to 22,921 thermal images to test the constructed system; 16,121 images were used for training and the remainder for testing. The test results showed 98.17% precision and 98.65% recall. Learning through drone-image shooting in various environments, after removing static from clouds and other noise, is expected to improve detection performance in the future.
      번역하기

      Small unmanned aerial vehicles, commonly known as drones, and their related industries are improving in leaps and bounds. The global drone industry began with a military focus and subsequently progressed into commercial applications. Consequently, abu...

      Small unmanned aerial vehicles, commonly known as drones, and their related industries are improving in leaps and bounds. The global drone industry began with a military focus and subsequently progressed into commercial applications. Consequently, abuse cases linked to drone technology are gradually increasing. Following the technical advancement in drone technology, studies on drone detection and prevention are actively ongoing. This is one such study. Radar-based drone detection that combines various existing sensors or equipment has shortcomings, including high costs and specialist operations. Thus, this paper proposes a drone-detection system that uses only thermal images from short-wavelength infrared (SWIR) cameras. The YOLO model, which is widely used for object recognition, was used for the drone-detection algorithm. Labels were attached to 22,921 thermal images to test the constructed system; 16,121 images were used for training and the remainder for testing. The test results showed 98.17% precision and 98.65% recall. Learning through drone-image shooting in various environments, after removing static from clouds and other noise, is expected to improve detection performance in the future.

      더보기

      참고문헌 (Reference)

      1 이동현, "심층 컨벌루션 신경망 기반의 실시간 드론 탐지 알고리즘" 한국로봇학회 12 (12): 425-431, 2017

      2 J. Redmon, "You only look once : Unified, real-time object detection" 779-788, 2016

      3 A. Bochkovskiy, "YOLOv4: Optical speed and accuracy of object detection"

      4 J. Redmon, "YOLOv3: An incremental improvement"

      5 C. Seol, "X-band phased array antenna radar design for drone detection" 363-365, 2019

      6 K. He, "Spatial pyramid pooling in deep convolutional networks for visual recognition" 37 (37): 1904-1916, 2015

      7 S. H. Choi, "Recent R&D trends of anti-drone technologies" 33 (33): 78-88, 2018

      8 S. Liu, "Path aggregation network for instance segmentation" 8759-8768, 2018

      9 B. T. Koo, "Implementation of AESA based intelligent radar system for small drone detection" 933-934, 2019

      10 이기웅, "ISAR 영상 기반 소형 드론 탐지 구현" 한국전자파학회 28 (28): 159-162, 2017

      1 이동현, "심층 컨벌루션 신경망 기반의 실시간 드론 탐지 알고리즘" 한국로봇학회 12 (12): 425-431, 2017

      2 J. Redmon, "You only look once : Unified, real-time object detection" 779-788, 2016

      3 A. Bochkovskiy, "YOLOv4: Optical speed and accuracy of object detection"

      4 J. Redmon, "YOLOv3: An incremental improvement"

      5 C. Seol, "X-band phased array antenna radar design for drone detection" 363-365, 2019

      6 K. He, "Spatial pyramid pooling in deep convolutional networks for visual recognition" 37 (37): 1904-1916, 2015

      7 S. H. Choi, "Recent R&D trends of anti-drone technologies" 33 (33): 78-88, 2018

      8 S. Liu, "Path aggregation network for instance segmentation" 8759-8768, 2018

      9 B. T. Koo, "Implementation of AESA based intelligent radar system for small drone detection" 933-934, 2019

      10 이기웅, "ISAR 영상 기반 소형 드론 탐지 구현" 한국전자파학회 28 (28): 159-162, 2017

      11 C. Szegedy, "Going deeper with convolutions" 1-9, 2015

      12 "GitHub - darkpgmr/DarkLabel: Video/Image Labeling and Annotation Tool"

      13 J. -K. Kim, "Faraway small drone detection based on deep learning" 20 (20): 149-154, 2020

      14 "Commercialization Promotion Agency for R&D Outcomes" 67 : 10-, 2019

      15 C. -Y. Wang, "CSPNet: A new backbone that can enhance learning capability of CNN" 390-391, 2020

      16 H. -G. Kim, "Analysis on patent trends for industry of unmanned aerial vehicle" 90-93, 2017

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2020-01-01 학술지명변경 외국어명 : JOURNAL OF THE KOREAN SOCIETY OF MARINE ENGINEERING -> Journal of Advanced Marine Engineering and Technology KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-07-07 학술지명변경 외국어명 : JOURNAL OF THE KOREAN SOCIETY OF MARINE ENGINEERS -> JOURNAL OF THE KOREAN SOCIETY OF MARINE ENGINEERING KCI등재
      2006-04-07 학술지명변경 한글명 : 한국박용기관학회지 -> 한국마린엔지니어링학회지 KCI등재
      2006-04-07 학술지명변경 한글명 : 한국박용기관학회지 -> 한국마린엔지니어링학회지 KCI등재
      2006-04-07 학술지명변경 한글명 : 한국박용기관학회지 -> 한국마린엔지니어링학회지 KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-06-16 학회명변경 한글명 : 한국박용기관학회 -> 한국마린엔지니어링학회
      영문명 : 미등록 -> The Korean Society of Marine Engineering
      KCI등재
      2003-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2002-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2001-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.34 0.34 0.35
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.32 0.29 0.428 0.08
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼