H₂S adsorption characteristics of adsorbent made by sewage sludge were investigated. The manufacturing method of adsorbent used in this experiment is to mix sewage sludge, waste lime, the high-alumina cement, NaHCO₃, and activated carbon. For anal...
H₂S adsorption characteristics of adsorbent made by sewage sludge were investigated. The manufacturing method of adsorbent used in this experiment is to mix sewage sludge, waste lime, the high-alumina cement, NaHCO₃, and activated carbon. For analyses of the manufactured adsorbent, various methods such as scanning electron microscope (SEM), measurements of BET surface area and pore volume were adopted. As operating variables, adsorption temperature (25~45 ℃), H₂S concentration (2.48~31.62 ㎎/L) and the kinds of adsorbent were applied. As major adsorption characteristics, adsorption rate and adsorption equilibrium capacity were measured by using batch type experimental apparatus. The experimental result showed that the BET surface area of the calcinated sewage sludge was 83.3 ㎡/g, which indicates 4 times higher than that of non calcination and the BET surface area of adsorbent made by sewage sludge mixing with various by-products ranged over 265 to 286 ㎡/g. It was also found that the H₂S adsorption equilibrium capacity of adsorbent made by sewage sludge decreases with increasing temperature, but increases with increasing H₂S concentration. Through the evaluation of adsorption isotherm model, it was found that H₂S adsorption isotherm for adsorbent made by sewage sludge can be expressed well by Langmuir and Freundlich isotherm equation.