RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Fuzzy Adaptive Compensation Control for Space Manipulator with Joint Flexibility and Dead Zone Based on Neural Network

      한글로보기

      https://www.riss.kr/link?id=A108696316

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Considering the problems of dead zone and flexibility in the joint transmission mechanism of space manipulator, a fuzzy compensation control method based on neural network is proposed. Dynamic equation of the system is established by the system’s li...

      Considering the problems of dead zone and flexibility in the joint transmission mechanism of space manipulator, a fuzzy compensation control method based on neural network is proposed. Dynamic equation of the system is established by the system’s linear and angular momentum conservation and Lagrange equation. Based on singular perturbation theory, it is decomposed into two subsystem models of fast variable and slow variable for control, respectively. A moment difference feedback controller is designed to suppress the elastic vibration for the fast-changing flexible subsystem model. Aiming at the unknown uncertainties in the slowly varying stiffness subsystem model, a radial basis function neural network controller is designed to approximate the unknown model and its approximation error is eliminated by a robust controller. Aiming at the dead zone link in the joint transmission mechanism, the mathematical relationship among dead zone estimation, dead zone compensator and controller is deduced. The dead zone estimator and dead zone compensator based on adaptive fuzzy system are designed to realize the online real-time estimation and compensation of dead zone, solving the tracking error caused by joint dead zone and improving the control accuracy. The parameter adaptive learning rate of the designed fuzzy system can realize online real-time adjustment without off-line learning stage. Based on Lyapunov theory, the uniform final boundedness of the signals of the whole closed-loop system is proved. Simulation results verify the effectiveness of the proposed control algorithm.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼