RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCI SCIE SCOPUS

      Enhancement of in vivo endothelialization of tissue-engineered vascular grafts by granulocyte colony-stimulating factor

      한글로보기

      https://www.riss.kr/link?id=A107530474

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P>Successful reconstruction of large-diameter blood vessel in humans has been demonstrated using the tissue engineering technique, but improvement in patency of small-diameter bioartificial vascular graft remains a great challenge. This study r...

      <P>Successful reconstruction of large-diameter blood vessel in humans has been demonstrated using the tissue engineering technique, but improvement in patency of small-diameter bioartificial vascular graft remains a great challenge. This study reports that granulocyte colony-stimulating factor (G-CSF) can enhance in vivo endothelialization of tissue-engineered vascular grafts, which could be used to improve patency of small-diameter vascular graft. Vascular grafts were tissue engineered with decellularized canine abdominal aortas and canine autologous bone marrow–derived cells. Prior to cell seeding onto decellularized graft matrices, bone marrow–derived cells were induced to differentiate into endothelial cells and smooth muscle cells. The cell-seeded vascular grafts were implanted into the abdominal aortas of bone marrow donor dogs. Before and after graft implantation, G-CSF was administered subcutaneously to the dogs (n = 3). The grafts implanted into the dogs not receiving G-CSF were used as controls (n = 3). Eight weeks after implantation, grafts in both groups showed regeneration of vascular tissues including endothelium and smooth muscle. Importantly, endothelium formation was more extensive in the G-CSF–treated grafts than in the control grafts, as assessed with reverse transcription polymerase chain reaction, western blot, and immunohistochemistry. In addition, intimal hyperplasia was significantly reduced in the G-CSF–treated grafts compared to the control grafts. This study suggests that G-CSF administration could be applied to improve patency of small-diameter tissue-engineered vascular grafts. © 2005 Wiley Periodicals, Inc. J Biomed Mater Res, 2006</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼