<P>Successful reconstruction of large-diameter blood vessel in humans has been demonstrated using the tissue engineering technique, but improvement in patency of small-diameter bioartificial vascular graft remains a great challenge. This study r...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A107530474
-
2006
-
SCI,SCIE,SCOPUS
학술저널
252-263(12쪽)
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
<P>Successful reconstruction of large-diameter blood vessel in humans has been demonstrated using the tissue engineering technique, but improvement in patency of small-diameter bioartificial vascular graft remains a great challenge. This study r...
<P>Successful reconstruction of large-diameter blood vessel in humans has been demonstrated using the tissue engineering technique, but improvement in patency of small-diameter bioartificial vascular graft remains a great challenge. This study reports that granulocyte colony-stimulating factor (G-CSF) can enhance in vivo endothelialization of tissue-engineered vascular grafts, which could be used to improve patency of small-diameter vascular graft. Vascular grafts were tissue engineered with decellularized canine abdominal aortas and canine autologous bone marrow–derived cells. Prior to cell seeding onto decellularized graft matrices, bone marrow–derived cells were induced to differentiate into endothelial cells and smooth muscle cells. The cell-seeded vascular grafts were implanted into the abdominal aortas of bone marrow donor dogs. Before and after graft implantation, G-CSF was administered subcutaneously to the dogs (n = 3). The grafts implanted into the dogs not receiving G-CSF were used as controls (n = 3). Eight weeks after implantation, grafts in both groups showed regeneration of vascular tissues including endothelium and smooth muscle. Importantly, endothelium formation was more extensive in the G-CSF–treated grafts than in the control grafts, as assessed with reverse transcription polymerase chain reaction, western blot, and immunohistochemistry. In addition, intimal hyperplasia was significantly reduced in the G-CSF–treated grafts compared to the control grafts. This study suggests that G-CSF administration could be applied to improve patency of small-diameter tissue-engineered vascular grafts. © 2005 Wiley Periodicals, Inc. J Biomed Mater Res, 2006</P>