RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      CT 정도관리를 위한 인공지능 모델 적용에 관한 연구 = Study on the Application of Artificial Intelligence Model for CT Quality Control

      한글로보기

      https://www.riss.kr/link?id=A108636283

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      CT is a medical device that acquires medical images based on Attenuation coefficient of human organs related to X-rays. In addition, using this theory, it can acquire sagittal and coronal planes and 3D images of the human body. Then, CT is essential d...

      CT is a medical device that acquires medical images based on Attenuation coefficient of human organs related to X-rays. In addition, using this theory, it can acquire sagittal and coronal planes and 3D images of the human body. Then, CT is essential device for universal diagnostic test. But Exposure of CT scan is so high that it is regulated and managed with special medical equipment. As the special medical equipment, CT must implement quality control.
      In detail of quality control, Spatial resolution of existing phantom imaging tests, Contrast resolution and clinical image evaluation are qualitative tests. These tests are not objective, so the reliability of the CT undermine trust. Therefore, by applying an artificial intelligence classification model, we wanted to confirm the possibility of quantitative eval- uation of the qualitative evaluation part of the phantom test. We used intelligence classification models (VGG19, DenseNet201, EfficientNet B2, inception_resnet_v2, ResNet50V2, and Xception). And the fine-tuning process used for learning was additionally performed. As a result, in all classification models, the accuracy of spatial resolution was 0.9562 or higher, the precision was 0.9535, the recall was 1, the loss value was 0.1774, and the learning time was from a maximum of 14 minutes to a minimum of 8 minutes and 10 seconds. Through the experimental results, it was concluded that the artificial intelligence model can be applied to CT implements quality control in spatial res- olution and contrast resolution.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼