RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI우수등재

      차량 운행기록정보와 통행배정 모형을 이용한 교차로 영향권의 공간적 패턴에 관한 연구 = A Study on Spatial Pattern of Impact Area of Intersection Using Digital Tachograph Data and Traffic Assignment Model

      한글로보기

      https://www.riss.kr/link?id=A105442152

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      본 연구는 단속류 도로에서 짧은 미래(5분 또는 10분)의 교차로 방향별 진입 교통량을 예측함에 앞서, 교차로 상류부 링크에서 교차로로 진입하는 방향별 패턴에 대한 연구를 수행하였고, 통...

      본 연구는 단속류 도로에서 짧은 미래(5분 또는 10분)의 교차로 방향별 진입 교통량을 예측함에 앞서, 교차로 상류부 링크에서 교차로로 진입하는 방향별 패턴에 대한 연구를 수행하였고, 통행배정 모형과의 연계 및 활용을 통한 교통량 예측 가능성을 검토하였다. 분석 방법은 택시 DTG (Digital Tachograph) 자료(1주일)를 이용하여 2시간 단위로 구분된 교차로 방향별 교통량 비율을 변수로 클러스터 분석(Cluster analysis)을 수행하여 패턴의 유사성을 검토하였다. 또한, 통행배정 모형 결과와 연계를 위해 택시 DTG 자료와 교차로 중심의 5분 또는 10분 범위에 포함되는 영향권 비교 분석을 수행하였으며, 이를 위해 택시 DTG 자료와 통행배정 모형의 영향권 설정 알고리즘을 개발하였다. 분석 결과, 택시의 교차로 진입 패턴은 총 12개로 집합화 되었으며, 클러스터링의 신뢰 수준을 나타내는 Cubic Clustering Criterion은 6.92로 나타나 클러스터링 결과에 대한 신뢰성을 확보하였다. 통행배정 모형의 영향권 범위와 상관분석을 수행한 결과, 5분 영향권 범위에 대한 상관계수는 0.86으로 분석되어 유의한 결과를 도출하였다. 다만 10분 영향권 범위에서는 상관계수가 0.69로 다소 낮아지는 것으로 분석되었는데, 이는 통행량 및 네트워크 자료의 정밀성 부족에 따른 것으로 나타났다. 향후, 교통 분석용 네트워크의 정밀성과 시간대별 통행량의 정확성을 향상시켜 분석할 경우, 교차로 신호제어에 있어 통행배정 모형에서 산출된 교통량 자료를 활용할 수 있을 것으로 기대된다.

      더보기

      다국어 초록 (Multilingual Abstract)

      In this study, we studied the directional pattern of entering the intersection from the intersection upstream link prior to predicting short future (such as 5 or 10 minutes) intersection direction traffic volume on the interrupted flow, and examined t...

      In this study, we studied the directional pattern of entering the intersection from the intersection upstream link prior to predicting short future (such as 5 or 10 minutes) intersection direction traffic volume on the interrupted flow, and examined the possibility of traffic volume prediction using traffic assignment model. The analysis method of this study is to investigate the similarity of patterns by performing cluster analysis with the ratio of traffic volume by intersection direction divided by 2 hours using taxi DTG (Digital Tachograph) data (1 week). Also, for linking with the result of the traffic assignment model, this study compares the impact area of 5 minutes or 10 minutes from the center of the intersection with the analysis result of taxi DTG data. To do this, we have developed an algorithm to set the impact area of intersection, using the taxi DTG data and traffic assignment model. As a result of the analysis, the intersection entry pattern of the taxi is grouped into 12, and the Cubic Clustering Criterion indicating the confidence level of clustering is 6.92. As a result of correlation analysis with the impact area of the traffic assignment model, the correlation coefficient for the impact area of 5 minutes was analyzed as 0.86, and significant results were obtained. However, it was analyzed that the correlation coefficient is slightly lowered to 0.69 in the impact area of 10 minutes from the center of the intersection, but this was due to insufficient accuracy of O/D (Origin/Destination) travel and network data. In future, if accuracy of traffic network and accuracy of O/D traffic by time are improved, it is expected that it will be able to utilize traffic volume data calculated from traffic assignment model when controlling traffic signals at intersections.

      더보기

      참고문헌 (Reference)

      1 허태영, "최단경로 기반 교통량 공간 예측에 관한 연구" 한국통계학회 20 (20): 459-473, 2007

      1 허태영, "최단경로 기반 교통량 공간 예측에 관한 연구" 한국통계학회 20 (20): 459-473, 2007

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2022 평가예정 계속평가 신청대상 (등재유지)
      2017-01-01 평가 우수등재학술지 선정 (계속평가)
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.43 0.43 0.46
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.46 0.43 0.762 0.2
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼