RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      New Forms of Riccati Equations and the Further Results of the Optimal Control for Linear Discrete-Time Systems

      한글로보기

      https://www.riss.kr/link?id=A104902061

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      For linear discrete-time systems, the traditional finite horizon optimal controller is proved to render the closed-loop systems asymptotically stable under some assumptions in literature. In this paper, a new form of finite horizon discrete-time Ricca...

      For linear discrete-time systems, the traditional finite horizon optimal controller is proved to render the closed-loop systems asymptotically stable under some assumptions in literature. In this paper, a new form of finite horizon discrete-time Riccati equation is proposed. It is proved that the new form of fi-nite horizon discrete-time Riccati equation is equivalent to the other three old ones. Based on this new form of finite horizon discrete-time Riccati equation, the finite horizon optimal controller of linear discrete time systems is proved to render the closed-loop system exponentially stable without any assumptions. At the same time, a new form of infinite horizon discrete-time Riccati equation is proposed when the discrete system is controllable or stabilizable. It is proved that the new form of infi-nite horizon discrete-time Riccati equation is equivalent to the other three old ones too. Based on this new form of infinite horizon discrete-time Riccati equation, the infinite horizon optimal controller of linear discrete-time systems is proved to render the closed-loop system exponentially stable when the open-loop system is either controllable or stabilizable. Finally an unstable batch reactor and an unsta-ble inverted pendulum are used to verify the theory results of this paper.

      더보기

      참고문헌 (Reference)

      1 Y. S. Shmaliy, "Time-variant linear optimal finite impulse response estimator for discrete state-space models" 26 (26): 95-104, 2012

      2 M. Athans, "The uncertainty threshold principle : some fundamental limitations of optimal decision making under dynamic uncertainty" 22 (22): 491-495, 1977

      3 A. A. Stoovogel, "The discrete-time Riccati equation related to the H ∞control problem" 39 (39): 686-691, 1994

      4 D. L. Kleinman, "The discrete minimum principle with application to the linear regulator problem" Electron. Syst. Lab, Mass. Inst. Tech. 1966

      5 B. Alan, "Swing-up control of inverted pendulum systems" 14 (14): 397-405, 1996

      6 S. S. Hu, "Stochastic optimal control and analysis of stability of networked control systems with long delay" 39 (39): 1877-1884, 2003

      7 D. L. Kleinman, "Stabilizing a discrete, constant, linear system with application to iterative methods for solving the Riccati equation" 19 (19): 252-254, 1974

      8 Y. Engin, "Stabilization of deterministic and stochastic-parameter discrete systems" 42 (42): 33-41, 1985

      9 R. E. Kalman, "Optimal synthesis of linear sampling control systems using generalized performance indexes" 80 : 1820-1826, 1958

      10 D. Peter, "Optimal linear regulators : the discrete-time case" 16 (16): 613-620, 1971

      1 Y. S. Shmaliy, "Time-variant linear optimal finite impulse response estimator for discrete state-space models" 26 (26): 95-104, 2012

      2 M. Athans, "The uncertainty threshold principle : some fundamental limitations of optimal decision making under dynamic uncertainty" 22 (22): 491-495, 1977

      3 A. A. Stoovogel, "The discrete-time Riccati equation related to the H ∞control problem" 39 (39): 686-691, 1994

      4 D. L. Kleinman, "The discrete minimum principle with application to the linear regulator problem" Electron. Syst. Lab, Mass. Inst. Tech. 1966

      5 B. Alan, "Swing-up control of inverted pendulum systems" 14 (14): 397-405, 1996

      6 S. S. Hu, "Stochastic optimal control and analysis of stability of networked control systems with long delay" 39 (39): 1877-1884, 2003

      7 D. L. Kleinman, "Stabilizing a discrete, constant, linear system with application to iterative methods for solving the Riccati equation" 19 (19): 252-254, 1974

      8 Y. Engin, "Stabilization of deterministic and stochastic-parameter discrete systems" 42 (42): 33-41, 1985

      9 R. E. Kalman, "Optimal synthesis of linear sampling control systems using generalized performance indexes" 80 : 1820-1826, 1958

      10 D. Peter, "Optimal linear regulators : the discrete-time case" 16 (16): 613-620, 1971

      11 T. Pappas, "On the numerical solution of the discrete-time algebraic Riccati equation" 25 (25): 631-641, 1980

      12 K. Tohru, "On the matrix Riccati equation for linear systems with a random gain" 21 (21): 770-771, 1976

      13 R. E. Kalman, "On the general theory of control" 481 (481): 481-492, 1960

      14 A. H. Levis, "On the behavior of optimal linear sampled-data regulators" 13 (13): 343-361, 1971

      15 A. H. Levis, "On the Optimal Sampled-data Control of Linear Processes" Inst. Tech., Cambridge 1968

      16 R. Nils, "On Newton’s method for Riccati equation solution" 19 (19): 254-255, 1974

      17 Xinghua Liu, "On Exponential Stability of Neutral Delay Markovian Jump Systems with Nonlinear Perturbations and Partially Unknown Transition Rates" 제어·로봇·시스템학회 12 (12): 1-11, 2014

      18 J. J. Hench, "Numerical solution of the discrete-time periodic Riccati equation" 39 (39): 1197-1210, 1994

      19 H. K. Wimmer, "Monotonicity of maximal solutions of algebraic Riccati equations" 5 (5): 317-319, 1985

      20 Y. S. Shmaliy, "Linear optimal FIR estimation of discrete time-invariant state space models" 58 (58): 3086-3096, 2010

      21 Y. Engin, "General suboptimal approach to the control and estimation of discrete-time system" 16 (16): 1095-1108, 1985

      22 Q. X. Zhu, "Finite-horizon optimal control of discrete-time switched linear systems" 2012 : 1-12, 2012

      23 B. J. Jackson, "Controllability, observability, realizability and stability of dynamic linear systems" 2009 (2009): 1-32, 2009

      24 M. Aoki, "Control of linear discrete-time stochastic dynamic systems with multiplicative disturbance" 20 (20): 388-392, 1975

      25 Y. Engin, "Bounds for the eigenvalue of the solution matrix of the algebraic Riccati equation" 16 (16): 815-820, 1985

      26 Y. D. Ji, "Bounded sample path control of discrete time jump linear systems" 19 (19): 277-284, 1989

      27 A. H. Gary, "An Iterative technique for the computation of the steady state gains for the discrete optimal regulator" 16 (16): 382-383, 1971

      28 J. M. Davis, "Algebraic and dynamic Lyapunov equations on time scale" 329-334, 2010

      29 P. Lancaster, "Algebraic Riccati Equations" Clarendon Press 1995

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-12-29 학회명변경 한글명 : 제어ㆍ로봇ㆍ시스템학회 -> 제어·로봇·시스템학회 KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-10-29 학회명변경 한글명 : 제어ㆍ자동화ㆍ시스템공학회 -> 제어ㆍ로봇ㆍ시스템학회
      영문명 : The Institute Of Control, Automation, And Systems Engineers, Korea -> Institute of Control, Robotics and Systems
      KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.35 0.6 1.07
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.88 0.73 0.388 0.04
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼