RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCI SCIE SCOPUS

      Applications of genome-scale metabolic network model in metabolic engineering.

      한글로보기

      https://www.riss.kr/link?id=A107474812

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P>Genome-scale metabolic network model (GEM) is a fundamental framework in systems metabolic engineering. GEM is built upon extensive experimental data and literature information on gene annotation and function, metabolites and enzymes so that ...

      <P>Genome-scale metabolic network model (GEM) is a fundamental framework in systems metabolic engineering. GEM is built upon extensive experimental data and literature information on gene annotation and function, metabolites and enzymes so that it contains all known metabolic reactions within an organism. Constraint-based analysis of GEM enables the identification of phenotypic properties of an organism and hypothesis-driven engineering of cellular functions to achieve objectives. Along with the advances in omics, high-throughput technology and computational algorithms, the scope and applications of GEM have substantially expanded. In particular, various computational algorithms have been developed to predict beneficial gene deletion and amplification targets and used to guide the strain development process for the efficient production of industrially important chemicals. Furthermore, an Escherichia coli GEM was integrated with a pathway prediction algorithm and used to evaluate all possible routes for the production of a list of commodity chemicals in E. coli. Combined with the wealth of experimental data produced by high-throughput techniques, much effort has been exerted to add more biological contexts into GEM through the integration of omics data and regulatory network information for the mechanistic understanding and improved prediction capabilities. In this paper, we review the recent developments and applications of GEM focusing on the GEM-based computational algorithms available for microbial metabolic engineering.</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼