RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI우수등재

      Beach Area Changes and Resilience of the Eastern Coasts Before and After Typhoon Goni

      한글로보기

      https://www.riss.kr/link?id=A109321758

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <i>Due to climate change, waves have become increasingly stronger, making the analysis of beach changes before and after typhoons crucial for addressing beach erosion. This study utilized low-cost, high-efficiency video monitoring to analyze beach changes at 14 locations along Korea's east coast before and after typhoon impacts. Shorelines were extracted from 180 s average orthoimages using the Pixel Intensity Moving Average Extraction technique, and beach areas were calculated. The study focused on the recovery period following typhoon-induced erosion. During Typhoon Goni (2015), erosion reached up to 38% at Bongpo Beach, with a maximum affected area of 7,741 m<sup>2</sup> at Goraebul Beach. Post-typhoon recovery exceeded 89%, with most beaches returning to pre-typhoon conditions. The erosion period averaged 7 d, while recovery took approximately 27 d. Erosion was significantly influenced by natural forces such as waves, tides, and wind. The erosion period showed minimal correlation with wave energy, whereas the recovery period exhibited some correlation. Further long-term analysis, incorporating additional wave data and typhoon impact periods, is needed. Future research will aim to collect extensive typhoon data to systematically analyze erosion and recovery cycles in relation to external forces.</i>
      번역하기

      <i>Due to climate change, waves have become increasingly stronger, making the analysis of beach changes before and after typhoons crucial for addressing beach erosion. This study utilized low-cost, high-efficiency video monitoring to analyze bea...

      <i>Due to climate change, waves have become increasingly stronger, making the analysis of beach changes before and after typhoons crucial for addressing beach erosion. This study utilized low-cost, high-efficiency video monitoring to analyze beach changes at 14 locations along Korea's east coast before and after typhoon impacts. Shorelines were extracted from 180 s average orthoimages using the Pixel Intensity Moving Average Extraction technique, and beach areas were calculated. The study focused on the recovery period following typhoon-induced erosion. During Typhoon Goni (2015), erosion reached up to 38% at Bongpo Beach, with a maximum affected area of 7,741 m<sup>2</sup> at Goraebul Beach. Post-typhoon recovery exceeded 89%, with most beaches returning to pre-typhoon conditions. The erosion period averaged 7 d, while recovery took approximately 27 d. Erosion was significantly influenced by natural forces such as waves, tides, and wind. The erosion period showed minimal correlation with wave energy, whereas the recovery period exhibited some correlation. Further long-term analysis, incorporating additional wave data and typhoon impact periods, is needed. Future research will aim to collect extensive typhoon data to systematically analyze erosion and recovery cycles in relation to external forces.</i>

      더보기

      다국어 초록 (Multilingual Abstract)

      Due to climate change, waves have become increasingly stronger, making the analysis of beach changes before and after typhoons crucial for addressing beach erosion. This study utilized low-cost, high-efficiency video monitoring to analyze beach changes at 14 locations along Korea's east coast before and after typhoon impacts. Shorelines were extracted from 180 s average orthoimages using the Pixel Intensity Moving Average Extraction technique, and beach areas were calculated. The study focused on the recovery period following typhoon-induced erosion. During Typhoon Goni (2015), erosion reached up to 38% at Bongpo Beach, with a maximum affected area of 7,741 m2 at Goraebul Beach. Post-typhoon recovery exceeded 89%, with most beaches returning to pre-typhoon conditions. The erosion period averaged 7 d, while recovery took approximately 27 d. Erosion was significantly influenced by natural forces such as waves, tides, and wind. The erosion period showed minimal correlation with wave energy, whereas the recovery period exhibited some correlation. Further long-term analysis, incorporating additional wave data and typhoon impact periods, is needed. Future research will aim to collect extensive typhoon data to systematically analyze erosion and recovery cycles in relation to external forces.
      번역하기

      Due to climate change, waves have become increasingly stronger, making the analysis of beach changes before and after typhoons crucial for addressing beach erosion. This study utilized low-cost, high-efficiency video monitoring to analyze beach change...

      Due to climate change, waves have become increasingly stronger, making the analysis of beach changes before and after typhoons crucial for addressing beach erosion. This study utilized low-cost, high-efficiency video monitoring to analyze beach changes at 14 locations along Korea's east coast before and after typhoon impacts. Shorelines were extracted from 180 s average orthoimages using the Pixel Intensity Moving Average Extraction technique, and beach areas were calculated. The study focused on the recovery period following typhoon-induced erosion. During Typhoon Goni (2015), erosion reached up to 38% at Bongpo Beach, with a maximum affected area of 7,741 m2 at Goraebul Beach. Post-typhoon recovery exceeded 89%, with most beaches returning to pre-typhoon conditions. The erosion period averaged 7 d, while recovery took approximately 27 d. Erosion was significantly influenced by natural forces such as waves, tides, and wind. The erosion period showed minimal correlation with wave energy, whereas the recovery period exhibited some correlation. Further long-term analysis, incorporating additional wave data and typhoon impact periods, is needed. Future research will aim to collect extensive typhoon data to systematically analyze erosion and recovery cycles in relation to external forces.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼