RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      A comparison of the problem-solving strategies between high school engineering and science students in integrated STEM education

      한글로보기

      https://www.riss.kr/link?id=A106070920

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Given our rapid societal change, the ability to solve problems using interdisciplinary knowledge and skills is becoming increasingly important. To support these educational needs, many international countries have adopted STEM/STEAM education as a cor...

      Given our rapid societal change, the ability to solve problems using interdisciplinary knowledge and skills is becoming increasingly important. To support these educational needs, many international countries have adopted STEM/STEAM education as a core learning platform. However, the fundamental differences of problem-solving strategies within the STEM/STEAM disciplines influence students’ cognitive structures and problem-solving strategies. To investigate the various problem-solving strategies used by science and engineering (technology) students, the researcher recruited six high school students, three from engineering courses and three from science courses. The participant students were taught a STEM/STEAM unit, but the engineering group had only participated in the physical modeling process. After completing the STEM/STEAM lessons, the two groups were given a design task with a structure similar to the integrated lessons. To assess the mental strategies of students, the researcher used the Concurrent-Think Aloud protocol and the seven of Halfin’s codes. The results showed that the engineering students tended to use a variety of problem-solving strategies, while the science students concentrated on solution-oriented strategies. The researcher also confirmed that the engineering students showed various design iterations by revisiting the problem identification process throughout the design process. However, the science students tended to show a limited number of iterations. The design outcomes also showed that the science students yielded many innovative design ideas but failed to provide details for their design solutions. When instructing STEM/STEAM lessons, educators need to utilize authentic instructional strategies to improve students’ integrative problem-solving abilities.

      더보기

      참고문헌 (Reference)

      1 이춘식, "미국 STEM 교육의 최신 동향과 딜레마" 한국실과교육학회 25 (25): 101-122, 2012

      2 이은상, "기술교과 정보통신기술 단원에서 STEAM 적용 수업이 중학생의 기술적 사고 성향에 미치는 효과" 한국기술교육학회 13 (13): 128-155, 2013

      3 Korean Ministry of Education, Science and Technology, "The second basic plan to foster and support the human resources in science and technology (2011-2015)" MEST 2011

      4 Duit, R., "The psychology of learning science" Routledge 65-85, 1991

      5 DAVID P. CRISMOND, "The Informed Design Teaching and Learning Matrix" Wiley 101 (101): 738-797, 2012

      6 Halfin, H. H., "Technology: A process approach" West Virginia University 1973

      7 Leona Schauble, "Students' transition from an engineering model to a science model of experimentation" Wiley 28 (28): 859-882, 1991

      8 International Technology and Engineering Educators Association (ITEA/ITEEA)., "Standards for technological literacy: Content for the study of technology" International Technology and Engineering Educators Association 2007

      9 Corinne Kruger, "Solution driven versus problem driven design: strategies and outcomes" Elsevier BV 27 (27): 527-548, 2006

      10 Sanders, M., "STEM, STEM education, STEMmania" 68 (68): 20-26, 2009

      1 이춘식, "미국 STEM 교육의 최신 동향과 딜레마" 한국실과교육학회 25 (25): 101-122, 2012

      2 이은상, "기술교과 정보통신기술 단원에서 STEAM 적용 수업이 중학생의 기술적 사고 성향에 미치는 효과" 한국기술교육학회 13 (13): 128-155, 2013

      3 Korean Ministry of Education, Science and Technology, "The second basic plan to foster and support the human resources in science and technology (2011-2015)" MEST 2011

      4 Duit, R., "The psychology of learning science" Routledge 65-85, 1991

      5 DAVID P. CRISMOND, "The Informed Design Teaching and Learning Matrix" Wiley 101 (101): 738-797, 2012

      6 Halfin, H. H., "Technology: A process approach" West Virginia University 1973

      7 Leona Schauble, "Students' transition from an engineering model to a science model of experimentation" Wiley 28 (28): 859-882, 1991

      8 International Technology and Engineering Educators Association (ITEA/ITEEA)., "Standards for technological literacy: Content for the study of technology" International Technology and Engineering Educators Association 2007

      9 Corinne Kruger, "Solution driven versus problem driven design: strategies and outcomes" Elsevier BV 27 (27): 527-548, 2006

      10 Sanders, M., "STEM, STEM education, STEMmania" 68 (68): 20-26, 2009

      11 Ericsson, K. A., "Protocol analysis: Verbal reports as data" MIT Press 1993

      12 NGSS Lead States, "Next generation science standards: For states" National Academies Press 2013

      13 Patrick Foster, "Must we MST?" Virginia Tech Libraries 6 (6): 1994

      14 Felder, R. M., "Learning and teaching styles in engineering education" 78 (78): 674-681, 1998

      15 Indiana Department of Education, "Indiana Academic Standards for Science"

      16 Todd Kelley, "Examining Elementary School Students’ Transfer of Learning Through Engineering Design Using Think-Aloud Protocol Analysis" Virginia Tech Libraries 28 (28): 2017

      17 Bucciarelli, L. L., "Engineering philosophy" Dup Satellite 2003

      18 Cross, N., "Engineering design methods: strategies for product design" The Open University 2008

      19 권혁수, "Engineering Design: A Facilitator for Science, Technology, Engineering, and Mathematics [STEM] Education" 과학교육연구소 33 (33): 207-219, 2009

      20 Cynthia J. Atman, "Engineering Design Processes: A Comparison of Students and Expert Practitioners" Wiley 96 (96): 359-379, 2007

      21 Gall, M. D., "Educational research : An introduction" Pearson Education 2007

      22 Horst W. J. Rittel, "Dilemmas in a general theory of planning" Springer Nature 4 (4): 155-169, 1973

      23 Kees Dorst, "Creativity in the design process: co-evolution of problem–solution" Elsevier BV 22 (22): 425-437, 2001

      24 Mosborg, S., "Conceptions of the engineering design process: An expert study of advanced practicing professionals" 2005

      25 BRYAN R. LAWSON, "Cognitive Strategies in Architectural Design" Informa UK Limited 22 (22): 59-68, 1979

      26 Professor D. B. Bromley, "Academic contributions to psychological counselling. 1. A philosophy of science for the study of individual cases" Informa UK Limited 3 (3): 299-307, 2007

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2014-01-08 학술지명변경 외국어명 : 미등록 -> THE KOREAN JOURNAL OF TECHNOLOGY EDUCATION KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2006-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2004-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.52 1.52 1.72
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      1.66 1.72 2.247 0.44
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼