RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Adaptive Non-singular Terminal Sliding Mode Control for an Unmanned Underwater Vehicle: Real-time Experiments

      한글로보기

      https://www.riss.kr/link?id=A106609780

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This research work focuses on the design of a robust-adaptive control algorithm for a 4DOF Unmanned Underwater Vehicle (UUV). The proposed strategy is based in a Non-Singular Terminal Sliding Mode Control (NTSMC) with adaptive gains, where the proposed adaptation mechanism ensures that the gains remain bounded. In this control strategy a non-singular terminal sliding surface is proposed to obtain a faster convergence of the tracking errors. The NTSMC ensures Practical Finite-Time Stability for the closed-loop system as well as exhibits a chattering reduction. In order to demonstrate the satisfactory performance of the proposed controller, a set of experiments was performed with a Non-singular Terminal Sliding Mode Controller and an Adaptive Non-Singular Terminal Sliding Mode Control (ANTSMC) in real time for trajectory tracking in the X-Y plane, the graphs showed that the ANTSMC converges faster to a smaller region and reduces oscillations.
      번역하기

      This research work focuses on the design of a robust-adaptive control algorithm for a 4DOF Unmanned Underwater Vehicle (UUV). The proposed strategy is based in a Non-Singular Terminal Sliding Mode Control (NTSMC) with adaptive gains, where the propose...

      This research work focuses on the design of a robust-adaptive control algorithm for a 4DOF Unmanned Underwater Vehicle (UUV). The proposed strategy is based in a Non-Singular Terminal Sliding Mode Control (NTSMC) with adaptive gains, where the proposed adaptation mechanism ensures that the gains remain bounded. In this control strategy a non-singular terminal sliding surface is proposed to obtain a faster convergence of the tracking errors. The NTSMC ensures Practical Finite-Time Stability for the closed-loop system as well as exhibits a chattering reduction. In order to demonstrate the satisfactory performance of the proposed controller, a set of experiments was performed with a Non-singular Terminal Sliding Mode Controller and an Adaptive Non-Singular Terminal Sliding Mode Control (ANTSMC) in real time for trajectory tracking in the X-Y plane, the graphs showed that the ANTSMC converges faster to a smaller region and reduces oscillations.

      더보기

      참고문헌 (Reference)

      1 J. Guerrero, "Trajectory tracking for autonomous underwater vehicle : An adaptive approach" 172 : 511-522, 2019

      2 I. -L. Borlaug, "Trajectory tracking for an articulated intervention AUV using a super-twisting algorithm in 6 dof" 51 (51): 311-316, 2018

      3 정철수, "Tracking Error Constrained Super-twisting Sliding Mode Control for Robotic Systems" 제어·로봇·시스템학회 16 (16): 804-814, 2018

      4 S. Pang, "Three-dimensional leader-follower formation control of multiple autonomous underwater vehicles based on line-of-sight measurements using the backstepping method" 232 (232): 819-829, 2018

      5 T. Elmokadem, "Terminal sliding mode control for the trajectory tracking of underactuated autonomous underwater vehicles" 129 : 613-625, 2017

      6 J. Melo, "Survey on advances on terrain based navigation for autonomous underwater vehicles" 139 : 250-264, 2017

      7 Y. B. Shtessel, "Super-twisting adaptive sliding mode control : A lyapunov design" 5109-5113, 2010

      8 L. Derafa, "Super twisting control algorithm for the attitude tracking of a four rotors uav" 349 (349): 685-699, 2012

      9 J. A. Moreno, "Strict lyapunov functions for the super-twisting algorithm" 57 (57): 1035-1040, 2012

      10 V. I. Utkin, "Sliding mode control design principles and applications to electric drives" 40 (40): 23-36, 1993

      1 J. Guerrero, "Trajectory tracking for autonomous underwater vehicle : An adaptive approach" 172 : 511-522, 2019

      2 I. -L. Borlaug, "Trajectory tracking for an articulated intervention AUV using a super-twisting algorithm in 6 dof" 51 (51): 311-316, 2018

      3 정철수, "Tracking Error Constrained Super-twisting Sliding Mode Control for Robotic Systems" 제어·로봇·시스템학회 16 (16): 804-814, 2018

      4 S. Pang, "Three-dimensional leader-follower formation control of multiple autonomous underwater vehicles based on line-of-sight measurements using the backstepping method" 232 (232): 819-829, 2018

      5 T. Elmokadem, "Terminal sliding mode control for the trajectory tracking of underactuated autonomous underwater vehicles" 129 : 613-625, 2017

      6 J. Melo, "Survey on advances on terrain based navigation for autonomous underwater vehicles" 139 : 250-264, 2017

      7 Y. B. Shtessel, "Super-twisting adaptive sliding mode control : A lyapunov design" 5109-5113, 2010

      8 L. Derafa, "Super twisting control algorithm for the attitude tracking of a four rotors uav" 349 (349): 685-699, 2012

      9 J. A. Moreno, "Strict lyapunov functions for the super-twisting algorithm" 57 (57): 1035-1040, 2012

      10 V. I. Utkin, "Sliding mode control design principles and applications to electric drives" 40 (40): 23-36, 1993

      11 Z. Yan, "Robust adaptive sliding mode control of underactuated autonomous underwater vehicles with uncertain dynamics" 173 : 802-809, 2019

      12 박정애, "Positioning Control of an Underwater Robot with Tilting Thrusters via Decomposition of Thrust Vector" 제어·로봇·시스템학회 15 (15): 2283-2291, 2017

      13 L. Yang, "Nonsingular fast terminal slidingmode control for nonlinear dynamical systems" 21 (21): 1865-1879, 2011

      14 Yongzhi Sheng, "Nonsingular Finite-time Second Order Sliding Mode Attitude Control for Reentry Vehicle" 제어·로봇·시스템학회 13 (13): 853-866, 2015

      15 P. S. Londhe, "Non-singular terminal sliding mode control for robust trajectory tracking control of an autonomous underwater vehicle" 443-449, 2017

      16 S. H. Sname, "Nomenclature for treating the motion of a submerged body through a fluid" 1950

      17 S. Li, "Neural network-based sliding mode variable structure control for mars entry" 226 (226): 1373-1386, 2012

      18 L. Stutters, "Navigation technologies for autonomous underwater vehicles" 38 (38): 581-589, 2008

      19 A. Chalanga, "Implementation of super-twisting control: Super-twisting and higher order sliding-mode observer-based approaches" 63 (63): 3677-3685, 2016

      20 T. I. Fossen, "Handbook of Marine Craft Hydrodynamics and Motion Control" John Wiley & Sons 2011

      21 Z. Yan, "Globally finite-time stable tracking control of underactuated UUVs" 107 : 132-146, 2015

      22 L. Qiao, "Double-loop integral terminal sliding mode tracking control for uuvs with adaptive dynamic compensation of uncertainties and disturbances" 44 (44): 29-53, 2019

      23 S. Mobayen, "Design of an adaptive tracker for n-link rigid robotic manipulators based on super-twisting global nonlinear sliding mode control" 48 (48): 1990-2002, 2017

      24 Y. Wang, "Depth control of remotely operated vehicles using nonsingular fast terminal sliding mode control method" 1-6, 2013

      25 A. Zamora, "Depth control of an underwater vehicle using robust pd controller : real-time experiments" 1-6, 2018

      26 E. Anderlini, "Control of a rov carrying an object" 165 : 307-318, 2018

      27 S. Yu, "Continuous finite-time control for robotic manipulators with terminal sliding mode" 41 (41): 1957-1964, 2005

      28 H. Wang, "Continuous fast nonsingular terminal sliding mode control of automotive electronic throttle systems using finite-time exact observer" 65 (65): 7160-7172, 2018

      29 J. Lee, "Clonal selection algorithms for 6-dof PID control of autonomous underwater vehicles" Springer 182-190, 2007

      30 A. Levant, "Chattering analysis" 55 (55): 1380-1389, 2010

      31 C. H. F. dos Santos, "Backstepping sliding mode control with functional tuning based on an instantaneous power approach applied to an underwater vehicle" 49 (49): 859-867, 2018

      32 S. M. Veres, "Autonomous vehicle control systems—a review of decision making" 225 (225): 155-195, 2011

      33 Z. Zhu, "Attitude stabilization of rigid spacecraft with finite-time convergence" 21 (21): 686-702, 2011

      34 Y. Wang, "Adaptive super-twisting fractional-order nonsingular terminal sliding mode control of cable-driven manipulators" 86 : 163-180, 2019

      35 L. Qiao, "Adaptive second-order fast nonsingular terminal sliding mode tracking control for fully actuated autonomous underwater vehicles" 44 (44): 363-385, 2018

      36 L. Qiao, "Adaptive non-singular integral terminal sliding mode tracking control for autonomous underwater vehicles" 11 (11): 1293-1306, 2017

      37 Z. Chu, "Adaptive fuzzy sliding mode diving control for autonomous underwater vehicle with input constraint" 20 (20): 1460-1469, 2018

      38 Saleh Mobayen, "Adaptive Global Terminal Sliding Mode Control Scheme with Improved Dynamic Surface for Uncertain Nonlinear Systems" 제어·로봇·시스템학회 16 (16): 1692-1700, 2018

      39 J. Partan, "A survey of practical issues in underwater networks" 11 (11): 23-33, 2007

      40 W. Naeem, "A review of guidance laws applicable to unmanned underwater vehicles" 56 (56): 15-29, 2003

      41 Y. Shtessel, "A novel adaptivegain supertwisting sliding mode controller : Methodology and application" 48 (48): 759-769, 2012

      42 José Antonio González, "A Practical Approach to Adaptive Sliding Mode Control" 제어·로봇·시스템학회 17 (17): 2452-2461, 2019

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-12-29 학회명변경 한글명 : 제어ㆍ로봇ㆍ시스템학회 -> 제어·로봇·시스템학회 KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-10-29 학회명변경 한글명 : 제어ㆍ자동화ㆍ시스템공학회 -> 제어ㆍ로봇ㆍ시스템학회
      영문명 : The Institute Of Control, Automation, And Systems Engineers, Korea -> Institute of Control, Robotics and Systems
      KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.35 0.6 1.07
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.88 0.73 0.388 0.04
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼