<P>Net ecosystem carbon dioxide (CO2) exchange (NEE) is a key parameter for understanding the terrestrial plant ecosystems, but it is difficult to monitor or predict over large areas at fine temporal resolutions. In this research, we estimated t...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A107429902
-
2017
-
SCI,SCIE,SCOPUS
학술저널
7441-7456(16쪽)
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
<P>Net ecosystem carbon dioxide (CO2) exchange (NEE) is a key parameter for understanding the terrestrial plant ecosystems, but it is difficult to monitor or predict over large areas at fine temporal resolutions. In this research, we estimated t...
<P>Net ecosystem carbon dioxide (CO2) exchange (NEE) is a key parameter for understanding the terrestrial plant ecosystems, but it is difficult to monitor or predict over large areas at fine temporal resolutions. In this research, we estimated the hourly NEE using a combination of the integrated neural network (NN) model with geostationary satellite imagery to overcome the limitations of existing daily polar orbiting satellite-derived carbon flux products. Two sets of satellite imageries (i.e. the meteorological imager (MI) and geostationary ocean colour imager (GOCI) aboard communication, ocean, and meteorological satellite (COMS)) and CO2 flux data derived from eddy covariance measurements were used to verify the feasibility of applying hourly geostationary satellite imagery with an NN-based approach for estimating NEE at high temporal resolutions. For the NN model, the optimum neuronal architecture was established using an NN with one hidden layer that was trained using the Levenberg-Marquardt back propagation algorithm. The hourly NEE values estimated in test period from the NN model using the combined COMS MI and GOCI imagery and ground measurements as model inputs were compared with the eddy covariance NEE values from the measurement tower, which yielded reliable statistical agreement. The hourly NEE results from the NN model based on COMS MI and GOCI imagery and ground measurement data had the highest accuracy (RMSE = 2.026 mu mol m(-2) s(-2), R = 0.975), while the root mean square error (RMSE) and the regression coefficient (R) generated by the NN model based on satellite imagery as the sole input variable were relatively lower (RMSE = 3.230 mu mol m(-2) s(-2), R = 0.952). Although the simulations for the satellite-only NEE were showed as lower accuracy than the NN model that included all input variables, the hourly variations in NEE also appeared to describe its daily growth and development pattern well, indicating the possibility of deriving hourly-based products from the proposed NN model using geostationary satellite data as inputs.</P>