RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Association of COVID‐19 with impaired endothelial glycocalyx, vascular function and myocardial deformation 4 months after infection

      한글로보기

      https://www.riss.kr/link?id=O108275721

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      SARS‐CoV‐2 infection may lead to endothelial and vascular dysfunction. We investigated alterations of arterial stiffness, endothelial coronary and myocardial function markers 4 months after COVID‐19 infection.
      In a case‐control prospective study, we included 70 patients 4 months after COVID‐19 infection, 70 age‐ and sex‐matched untreated hypertensive patients (positive control) and 70 healthy individuals. We measured (i) perfused boundary region (PBR) of the sublingual arterial microvessels (increased PBR indicates reduced endothelial glycocalyx thickness), (ii) flow‐mediated dilatation (FMD), (iii) coronary flow reserve (CFR) by Doppler echocardiography, (iv) pulse wave velocity (PWV), (v) global left and right ventricular longitudinal strain (GLS), and (vi) malondialdehyde (MDA), an oxidative stress marker, thrombomodulin and von Willebrand factor as endothelial biomarkers. COVID‐19 patients had similar CFR and FMD as hypertensives (2.48 ± 0.41 vs. 2.58 ± 0.88, P = 0.562, and 5.86 ± 2.82% vs. 5.80 ± 2.07%, P = 0.872, respectively) but lower values than controls (3.42 ± 0.65, P = 0.0135, and 9.06 ± 2.11%, P = 0.002, respectively). Compared to controls, both COVID‐19 and hypertensives had greater PBR5–25 (2.07 ± 0.15 µm and 2.07 ± 0.26 µm, P = 0.8 vs. 1.89 ± 0.17 µm, P = 0.001), higher PWV (carotid–femoral PWV 12.09 ± 2.50 vs. 11.92 ± 2.94, P = 0.7 vs. 10.04 ± 1.80 m/s, P = 0.036) and impaired left and right ventricular GLS (−19.50 ± 2.56% vs. −19.23 ± 2.67%, P = 0.864 vs. −21.98 ± 1.51%, P = 0.020 and −16.99 ± 3.17% vs. −18.63 ± 3.20%, P = 0.002 vs. −20.51 ± 2.28%, P < 0.001). MDA and thrombomodulin were higher in COVID‐19 patients than both hypertensives and controls (10.67 ± 0.32 vs 1.76 ± 0.03, P = 0.003 vs. 1.01 ± 0.05 nmol/L, P = 0.001 and 3716.63 ± 188.36 vs. 3114.46 ± 179.18 pg/mL, P = 0.017 vs. 2590.02 ± 156.51 pg/mL, P < 0.001). Residual cardiovascular symptoms at 4 months were associated with oxidative stress and endothelial dysfunction markers.
      SARS‐CoV‐2 may cause endothelial and vascular dysfunction linked to impaired cardiac performance 4 months after infection.
      번역하기

      SARS‐CoV‐2 infection may lead to endothelial and vascular dysfunction. We investigated alterations of arterial stiffness, endothelial coronary and myocardial function markers 4 months after COVID‐19 infection. In a case‐control prospective stu...

      SARS‐CoV‐2 infection may lead to endothelial and vascular dysfunction. We investigated alterations of arterial stiffness, endothelial coronary and myocardial function markers 4 months after COVID‐19 infection.
      In a case‐control prospective study, we included 70 patients 4 months after COVID‐19 infection, 70 age‐ and sex‐matched untreated hypertensive patients (positive control) and 70 healthy individuals. We measured (i) perfused boundary region (PBR) of the sublingual arterial microvessels (increased PBR indicates reduced endothelial glycocalyx thickness), (ii) flow‐mediated dilatation (FMD), (iii) coronary flow reserve (CFR) by Doppler echocardiography, (iv) pulse wave velocity (PWV), (v) global left and right ventricular longitudinal strain (GLS), and (vi) malondialdehyde (MDA), an oxidative stress marker, thrombomodulin and von Willebrand factor as endothelial biomarkers. COVID‐19 patients had similar CFR and FMD as hypertensives (2.48 ± 0.41 vs. 2.58 ± 0.88, P = 0.562, and 5.86 ± 2.82% vs. 5.80 ± 2.07%, P = 0.872, respectively) but lower values than controls (3.42 ± 0.65, P = 0.0135, and 9.06 ± 2.11%, P = 0.002, respectively). Compared to controls, both COVID‐19 and hypertensives had greater PBR5–25 (2.07 ± 0.15 µm and 2.07 ± 0.26 µm, P = 0.8 vs. 1.89 ± 0.17 µm, P = 0.001), higher PWV (carotid–femoral PWV 12.09 ± 2.50 vs. 11.92 ± 2.94, P = 0.7 vs. 10.04 ± 1.80 m/s, P = 0.036) and impaired left and right ventricular GLS (−19.50 ± 2.56% vs. −19.23 ± 2.67%, P = 0.864 vs. −21.98 ± 1.51%, P = 0.020 and −16.99 ± 3.17% vs. −18.63 ± 3.20%, P = 0.002 vs. −20.51 ± 2.28%, P < 0.001). MDA and thrombomodulin were higher in COVID‐19 patients than both hypertensives and controls (10.67 ± 0.32 vs 1.76 ± 0.03, P = 0.003 vs. 1.01 ± 0.05 nmol/L, P = 0.001 and 3716.63 ± 188.36 vs. 3114.46 ± 179.18 pg/mL, P = 0.017 vs. 2590.02 ± 156.51 pg/mL, P < 0.001). Residual cardiovascular symptoms at 4 months were associated with oxidative stress and endothelial dysfunction markers.
      SARS‐CoV‐2 may cause endothelial and vascular dysfunction linked to impaired cardiac performance 4 months after infection.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼