RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Physical forcing on fish abundance in the southern California Current System

      한글로보기

      https://www.riss.kr/link?id=O120814736

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The California Current System (CCS) is an eastern boundary current system with strong biological productivity largely due to seasonal wind‐driven upwelling and transport of the California Current (CC). Two independent, yet complementary time series,...

      The California Current System (CCS) is an eastern boundary current system with strong biological productivity largely due to seasonal wind‐driven upwelling and transport of the California Current (CC). Two independent, yet complementary time series, CalCOFI ichthyoplankton surveys and sampling of southern California power plant cooling‐water intakes, have indicated that an assemblage of predominantly cool‐water affinity fishes spanning nearshore to oceanic environments in the southern CCS has declined dramatically from the 1970s to the 2000s. We examined potential oceanographic drivers behind this decline both within and north of the CalCOFI survey area in order to capture upstream processes as well. Empirical orthogonal function (EOF) analyses using output from a data‐assimilative regional ocean model revealed significant relationships between the fish time series and spatial patterns of upwelling, upper ocean heat content and eddy kinetic energy in the CCS. Correlation and linear regression analyses indicated that the declining trend in fish abundance was correlated with a suite of factors: reduced offshore and increased inshore upwelling; a long term warming trend combined with more recent interannual variability in ocean temperature; weaker eddy kinetic energy north of Point Conception (35°N), potentially indicating reduced transport of the California Current (CC); increased influence of the California Undercurrent (CUC); and a decline in zooplankton displacement volume across the southern CCS. Understanding how changes in oceanography affect fish populations will offer insights into managing fisheries in a changing climate.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼