RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      SIFT와 SURF 알고리즘의 성능적 비교 분석 = Comparative Analysis of the Performance of SIFT and SURF

      한글로보기

      https://www.riss.kr/link?id=A104658764

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Accurate and robust image registration is important task in many applications such as image retrieval and computer vision. To perform the image registration, essential required steps are needed in the process: feature detection, extraction, matching, and reconstruction of image. In the process of these function, feature extraction not only plays a key role, but also have a big effect on its performance. There are two representative algorithms for extracting image features, which are scale invariant feature transform (SIFT) and speeded up robust feature (SURF). In this paper, we present and evaluate two methods, focusing on comparative analysis of the performance. Experiments for accurate and robust feature detection are shown on various environments such like scale changes, rotation and affine transformation. Experimental trials revealed that SURF algorithm exhibited a significant result in both extracting feature points and matching time, compared to SIFT method.
      번역하기

      Accurate and robust image registration is important task in many applications such as image retrieval and computer vision. To perform the image registration, essential required steps are needed in the process: feature detection, extraction, matching, ...

      Accurate and robust image registration is important task in many applications such as image retrieval and computer vision. To perform the image registration, essential required steps are needed in the process: feature detection, extraction, matching, and reconstruction of image. In the process of these function, feature extraction not only plays a key role, but also have a big effect on its performance. There are two representative algorithms for extracting image features, which are scale invariant feature transform (SIFT) and speeded up robust feature (SURF). In this paper, we present and evaluate two methods, focusing on comparative analysis of the performance. Experiments for accurate and robust feature detection are shown on various environments such like scale changes, rotation and affine transformation. Experimental trials revealed that SURF algorithm exhibited a significant result in both extracting feature points and matching time, compared to SIFT method.

      더보기

      참고문헌 (Reference)

      1 "http://www.mathworks.com"

      2 "http://en.wikipedia.org"

      3 Ran Tao, "Visual Concept Detection and Real Time Object Detection, In Computer Vision and Pattern Recognition" 2011

      4 Herbert Bay, "SURF: Speeded Up Robust Features" 110 (110): 346-359, 2008

      5 Paul Viola, "Rapid Object Detection using a Boosted Cascade of Simple Features" 1 : 511-518, 2001

      6 Ethan Rublee, "ORB: an efficient alternative to SIFT or SURF" 2564-2571, 2011

      7 Jun Yang, "Narrowing Semantic Gap in Content-based Image Retrieval" 433-438, 2012

      8 David G. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints" 60 (60): 91-110, 2004

      9 B.S. Manjunath, "Color and Texture Descriptors" 11 (11): 2001

      10 Rong Zhao, "Chapter 2. Bridging the Semantic Gap in Image Retrieval, In Distributed Multimedia Databases: Techniques and Applications" Idea Group Publishing 14-36,

      1 "http://www.mathworks.com"

      2 "http://en.wikipedia.org"

      3 Ran Tao, "Visual Concept Detection and Real Time Object Detection, In Computer Vision and Pattern Recognition" 2011

      4 Herbert Bay, "SURF: Speeded Up Robust Features" 110 (110): 346-359, 2008

      5 Paul Viola, "Rapid Object Detection using a Boosted Cascade of Simple Features" 1 : 511-518, 2001

      6 Ethan Rublee, "ORB: an efficient alternative to SIFT or SURF" 2564-2571, 2011

      7 Jun Yang, "Narrowing Semantic Gap in Content-based Image Retrieval" 433-438, 2012

      8 David G. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints" 60 (60): 91-110, 2004

      9 B.S. Manjunath, "Color and Texture Descriptors" 11 (11): 2001

      10 Rong Zhao, "Chapter 2. Bridging the Semantic Gap in Image Retrieval, In Distributed Multimedia Databases: Techniques and Applications" Idea Group Publishing 14-36,

      11 Luo Juan, "A Comparison of SIFT, CA-SIFT and SURF" 3 (3): 143-152, 2011

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2019-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2016-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2012-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-03-25 학회명변경 한글명 : 한국반도체및디스플레이장비학회 -> 한국반도체디스플레이기술학회
      영문명 : The Korean Society of Semiconductor & Display Equipment Technology -> The Korean Society of Semiconductor & Display Technology
      KCI등재
      2010-03-25 학술지명변경 한글명 : 반도체및디스플레이장비학회지 -> 반도체디스플레이기술학회지
      외국어명 : Journal of the Semiconductor and Display Equipment Technology -> Journal of the Semiconductor & Display Technology
      KCI등재
      2009-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2008-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2006-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.29 0.29 0.26
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.21 0.18 0.217 0.02
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼