RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      고정점 알고리즘과 시간적 상관성의 적응조정 = Hybrid ICA of Fixed-Point Algorithm and Robust Algorithm Using Adaptive Adaptation of Temporal Correlation

      한글로보기

      https://www.riss.kr/link?id=A103971873

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      본 논문에서는 고정점 알고리즘과 신호의 시간적 상관성을 적응 조정한 견실 알고리즘의 조합형 독립성분분석을 제안하였다. 여기서 고정점 알고리즘은 뉴우턴법의 경신규칙에 기초한 방법으로 빠른 분석속도와 우수한 분석성능을 얻기 위함이고, 견실 알고리즘은 시간적 상호 의존성이나 낮은 쿠토시스를 가지는 신호도 효과적으로 분석하기 위함이다. 특히 견실 알고리즘에서 경험적으로 설정되던 최대지연시간을 신호상호간의 자기상관함수를 이용하여 적응 조정되도록 함으로써 그 성능을 더욱 더 개선하였다. 제안된 독립성분분석을 500개 샘플을 가지는 4개의 신호와 512×512 픽셀의 10개 영상으로부터 임의의 혼합행렬에 따라 발생되는 혼합신호와 혼합영상 각각의 분리에 적용한 결과, 고정점 알고리즘의 독립성분분석 및 고정점 알고리즘과 최대시간지연을 경험적으로 설정하는 기존의 견실 알고리즘을 단순히 조합한 독립성분분석에 비해 분리속도와 분리률에서 개선된 성능이 있음을 확인하였다. 특히 문제의 규모가 증가할수록 분석성능의 개선정도도 증가함을 확인하였다.
      번역하기

      본 논문에서는 고정점 알고리즘과 신호의 시간적 상관성을 적응 조정한 견실 알고리즘의 조합형 독립성분분석을 제안하였다. 여기서 고정점 알고리즘은 뉴우턴법의 경신규칙에 기초한 방...

      본 논문에서는 고정점 알고리즘과 신호의 시간적 상관성을 적응 조정한 견실 알고리즘의 조합형 독립성분분석을 제안하였다. 여기서 고정점 알고리즘은 뉴우턴법의 경신규칙에 기초한 방법으로 빠른 분석속도와 우수한 분석성능을 얻기 위함이고, 견실 알고리즘은 시간적 상호 의존성이나 낮은 쿠토시스를 가지는 신호도 효과적으로 분석하기 위함이다. 특히 견실 알고리즘에서 경험적으로 설정되던 최대지연시간을 신호상호간의 자기상관함수를 이용하여 적응 조정되도록 함으로써 그 성능을 더욱 더 개선하였다. 제안된 독립성분분석을 500개 샘플을 가지는 4개의 신호와 512×512 픽셀의 10개 영상으로부터 임의의 혼합행렬에 따라 발생되는 혼합신호와 혼합영상 각각의 분리에 적용한 결과, 고정점 알고리즘의 독립성분분석 및 고정점 알고리즘과 최대시간지연을 경험적으로 설정하는 기존의 견실 알고리즘을 단순히 조합한 독립성분분석에 비해 분리속도와 분리률에서 개선된 성능이 있음을 확인하였다. 특히 문제의 규모가 증가할수록 분석성능의 개선정도도 증가함을 확인하였다.

      더보기

      다국어 초록 (Multilingual Abstract)

      This paper proposes a hybrid independent component analysis(ICA) of fixed-point(FP) algorithm and robust algorithm. The FP algorithm is applied for improving the analysis speed and performance, and the robust algorithm is applied for preventing performance degradations by means of very small kurtosis and temporal correlations between components. And the adaptive adaptation of temporal correlations has been proposed for solving limits of the conventional robust algorithm dependent on the maximum time delay. The proposed ICA has been applied to the problems for separating the 4-mixed signals of 500 samples and 10-mixed images of 512×512 pixels, respectively. The experimental results show that the proposed ICA has a characteristics of adaptively adapting the maximum time delay, and has a superior separation performances(speed, rate) to conventional FP-ICA and hybrid ICA of heuristic correlation. Especially, the proposed ICA gives the larger degree of improvement as the problem size increases.
      번역하기

      This paper proposes a hybrid independent component analysis(ICA) of fixed-point(FP) algorithm and robust algorithm. The FP algorithm is applied for improving the analysis speed and performance, and the robust algorithm is applied for preventing perfor...

      This paper proposes a hybrid independent component analysis(ICA) of fixed-point(FP) algorithm and robust algorithm. The FP algorithm is applied for improving the analysis speed and performance, and the robust algorithm is applied for preventing performance degradations by means of very small kurtosis and temporal correlations between components. And the adaptive adaptation of temporal correlations has been proposed for solving limits of the conventional robust algorithm dependent on the maximum time delay. The proposed ICA has been applied to the problems for separating the 4-mixed signals of 500 samples and 10-mixed images of 512×512 pixels, respectively. The experimental results show that the proposed ICA has a characteristics of adaptively adapting the maximum time delay, and has a superior separation performances(speed, rate) to conventional FP-ICA and hybrid ICA of heuristic correlation. Especially, the proposed ICA gives the larger degree of improvement as the problem size increases.

      더보기

      참고문헌 (Reference)

      1 A. Hyvarinen, "Survey on Independent Component Analysis" 2 : 94-128, 041999

      2 A. Cichochi, "Robust Neural Networks with On-Line Learning for Blind Identification and Blind Separation of Sources" 43 (43): 894-906, Nov.,1996.

      3 A. Cichochi, "Robust Learning Algorithm for Blind Separation of Signals" 30 (30): 1386-1387, 1994.

      4 A. Cichochi, "Robust Batch Algoritms for Sequential Blind Extraction of Noisy Biomedical Signals" 224-230, Oct.2000.

      5 A. K. Barros, "RICA - Reliable and Robust Program for Independent ComponentAnalysis" June,2000.

      6 A. Hyvarinen, "Fast & Robust Fixed-PointAlgorithms for Independent Component Analysis" 10 (10): 626-634, May1997.

      7 S. Haykin, "'Neural Networks" Prentice-hall July1998.

      8 J. Wesley Hines, "'MATLAB Supplement to Fuzzy and Neural Approaches in Engineering" John Wiley & Sons, Inc., June,1997.

      9 T. W. Lee, "'Independent Component Analysis" Kluwer Academic Pub Dec.,1998.

      10 A. Hyvarinen, "'Independent Component Analysis" John Wiley & Sons, Inc May,2001.

      1 A. Hyvarinen, "Survey on Independent Component Analysis" 2 : 94-128, 041999

      2 A. Cichochi, "Robust Neural Networks with On-Line Learning for Blind Identification and Blind Separation of Sources" 43 (43): 894-906, Nov.,1996.

      3 A. Cichochi, "Robust Learning Algorithm for Blind Separation of Signals" 30 (30): 1386-1387, 1994.

      4 A. Cichochi, "Robust Batch Algoritms for Sequential Blind Extraction of Noisy Biomedical Signals" 224-230, Oct.2000.

      5 A. K. Barros, "RICA - Reliable and Robust Program for Independent ComponentAnalysis" June,2000.

      6 A. Hyvarinen, "Fast & Robust Fixed-PointAlgorithms for Independent Component Analysis" 10 (10): 626-634, May1997.

      7 S. Haykin, "'Neural Networks" Prentice-hall July1998.

      8 J. Wesley Hines, "'MATLAB Supplement to Fuzzy and Neural Approaches in Engineering" John Wiley & Sons, Inc., June,1997.

      9 T. W. Lee, "'Independent Component Analysis" Kluwer Academic Pub Dec.,1998.

      10 A. Hyvarinen, "'Independent Component Analysis" John Wiley & Sons, Inc May,2001.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2012-10-31 학술지명변경 한글명 : 소프트웨어 및 데이터 공학 -> 정보처리학회논문지. 소프트웨어 및 데이터 공학 KCI등재
      2012-10-10 학술지명변경 한글명 : 정보처리학회논문지B -> 소프트웨어 및 데이터 공학
      외국어명 : The KIPS Transactions : Part B -> KIPS Transactions on Software and Data Engineering
      KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2003-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2002-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2000-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.35 0.35 0.28
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.23 0.19 0.511 0.06
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼