RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Identification of normal and abnormal from ultrasound images of power devices using VGG16

      한글로보기

      https://www.riss.kr/link?id=A107145621

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Power devices are semiconductor devices that handle high voltages and large currents, which are used in electric vehicles, televisions, and trains. Therefore, high reliability and safety are required, and to ensure this, power cycle tests are performe...

      Power devices are semiconductor devices that handle high voltages and large currents, which are used in electric vehicles, televisions, and trains. Therefore, high reliability and safety are required, and to ensure this, power cycle tests are performed to analyze the breakdown process. Conventional tests are often difficult to analyze due to the influence of sparks generated during the test. Therefore, new tests are being developed by adding ultrasound to conventional methods. The new technology is capable of continuously recording structural changes inside the device during testing, which is expected to make testing much easier than conventional testing. However, the new technology still has some challenges. The main problems are the lack of a method for analyzing large amounts of image data and the extraction of small changes in image features that are difficult to distinguish with the human eye, and the establishment of such a system is required. In this paper, we use deep learning for image classification of the obtained ultrasound images. We propose a new network model with the addition of Batch normalization and Global average pooling to VGG16, which is a pre-trained model. In the experiment, accuracy=98.29%, TPR=98.96% and FPR=7.43% classification accuracy was obtained.

      더보기

      목차 (Table of Contents)

      • Abstract
      • 1. INTRODUCTION
      • 2. METHOD
      • 3. EXPERIMENT
      • 4. DISCUSSION
      • Abstract
      • 1. INTRODUCTION
      • 2. METHOD
      • 3. EXPERIMENT
      • 4. DISCUSSION
      • 5. CONCLUSION
      • REFERENCES
      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼