RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      (A) comparison of mathematically talented and non-talented students levels of thinking with regard to statistical variability

      한글로보기

      https://www.riss.kr/link?id=T12809387

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      통계는 수학과는 다른 영역을 탐구하며, 또한 통계적 탐구를 안내하는 통계 고유의 개념을 가지고 있다. 특히 통계적 사고는 경험적 자료를 이용한 귀납 추론에서 핵심이 되는 불확실성에 대한 직관과 비결정론적 사고방식을 요구한다. 그러나 통계 학습을 위해 수와 연산, 비와 비율 등의 기본적인 개념부터 함수와 미적분 등의 고차원적 개념까지 수학이 필수적으로 요구된다. 이러한 이유로 연구자들은 수학적 사고와 통계적 사고의 공통점과 차이점, 수학적 추론 능력과 통계적 추론 능력 사이의 관계에 주목해 왔다.
      수학에서의 성취와 통계에서의 성취 사이의 관계를 조사한 일부 연구에서 비교적 강한 상관관계가 확인되었으나, 일부 연구에서는 매우 낮은 상관관계가 확인되었다. 그리고 수학적 추론 능력과 통계적 추론 능력 사이의 상관관계가 통계적 개념에 따라 다른 경향을 보임을 확인한 연구도 있다. 이와 같이 수학적 사고와 통계적 사고 사이의 관계에 대하여 상이한 연구결과가 제시되고 있으며, 또한 이에 대한 논의는 여전히 진행 중이다.
      본 연구에서는 수학적 사고 능력이 서로 다른 두 집단 간의 통계적 사고 능력 비교를 통해 수학적 사고 능력과 통계적 사고 능력 사이의 관계를 조사한다. 이를 위해 일반학급 학생들과의 비교를 통해 수학영재학급 학생들의 통계적 사고 능력은 어떠한지 조사하였다. 먼저 통계적 변이성에 대한 사고 요소를 변이성 인식, 변이성 설명, 변이성 제어, 변이성 모델링, 표본의 이해, 표집분포의 이해로 구분하였다. 그리고 각 요소에 대한 학생들의 사고 수준을 조사하기 위해 사고 수준 비교틀을 개발하고, 일반학급 학생들과 수학영재학급 학생들의 통계적 변이성에 대한 사고 수준을 조사하여 t-검정을 실시하였다. 연구결과는 다음과 같다.
      변이성 인식에 대한 사고는 측정상황과 우연상황 모두에서 5개의 수준으로 구분되었다. 변이성의 편재성 인식 부족(0 수준), 변이성 인정 불안정(1 수준), 하나의 실체로서 변이성 인식 부족(2 수준), 변이성을 하나의 실체로 인식(3 수준), 분포 개념의 발달(4 수준)로 구분되었다.
      변이성 설명에 대한 사고는 측정상황에서 5개의 수준으로 구분되었다. 변이성의 원인 설명에 대한 이해 부족(0 수준), 원인 인식 미흡(1 수준), 물리적 원인 제시(2 수준), 설명되지 않는 원인을 변이성의 근원으로 제시(3 수준), 설명되지 않는 원인을 의사-우연변이성으로 간주(4 수준)로 구분되었다. 우연상황에서도 역시 5개의 수준으로 구분되었다. 변이성의 원인 설명에 대한 이해 부족(0 수준), 원인 인식 미흡(1 수준), 물리적 원인 제시(2 수준), 우연변이성 제시(3 수준), 분포의 원인 제시(4 수준)로 구분되었다.
      변이성 제어에 대한 사고는 측정상황과 우연상황 모두에서 5개의 수준으로 구분되었다. 변이성 제어에 대한 인식 부족(0 수준), 물리적 제어 방법 미고려 그리고 통계적 방법의 부적절한 사용(1 수준), 물리적 제어 방법 미고려 그리고 통계적 방법의 적절한 사용(2 수준), 물리적 제어 방법 고려 그리고 통계적 방법의 부적절한 사용(3 수준), 물리적 제어 방법 고려 그리고 통계적 방법의 적절한 사용(4 수준)으로 구분되었다.
      변이성 모델링에 대한 사고는 5개의 수준으로 구분되었다. 변이성 모델링에 대한 인식 부족(0 수준), 극단적인 값에 주목(1 수준), 퍼짐이나 다수의 위치에 주목(2 수준), 중심에 주목(3 수준), 중심과 퍼짐 모두에 주목(4 수준)으로 구분되었다.
      표본의 이해에 대한 사고는 5개의 수준으로 구분되었다. 표본이 모집단의 일부분이라는 인식 부족(0 수준), 모집단의 부분집합으로 인식(1 수준), 모집단의 준비례적 축소버전으로 인식(2 수준), 편의없는 표본의 중요성 인식(3 수준), 무작위 표집의 영향 이해(4 수준)로 구분되었다.
      표집분포의 이해에 대한 사고는 5개의 수준으로 구분되었다. 표집변이성 인식 부족(0 수준), 표집변이성 인정(1 수준), 표본 통계량의 퍼짐에 주목(2 수준), 표본 통계량의 중심과 퍼짐에 주목(3 수준), 표본 크기와 표집변이성의 관계 인식(4 수준)으로 구분되었다.
      초등학교 수학영재학급 학생들과 일반학급 학생들의 사고 수준에 대한 t-검정 결과, 측정상황에서 변이성 설명, 측정상황에서 변이성 제어, 우연상황에서 변이성 제어, 변이성 모델링, 표본의 이해, 표집분포의 이해에 대한 사고에서 두 그룹 사이에 통계적으로 유의한 차이가 있는 것으로 나타났다. 그러나 측정상황과 우연상황에서 변이성 인식, 우연상황에서 변이성 설명에 대한 사고에서 통계적으로 유의한 차이가 없는 것으로 나타났다. 그리고 각 요소별 수학영재학급 학생들의 사고 수준의 분포는 일반학급 학생들의 사고 수준의 분포와 상당 부분 중첩되며 일부 요소에서는 동일한 범위에 분포되어 있는 것으로 나타났다.
      중학교 수학영재학급 학생들과 일반학급 학생들의 사고 수준에 대한 t-검정 결과, 측정상황에서 변이성 인식, 우연상황에서 변이성 인식, 측정상황에서 변이성 설명, 측정상황에서 변이성 제어, 우연상황에서 변이성 제어, 변이성 모델링, 표본의 이해에 대한 사고에서 통계적으로 유의한 차이가 있는 것으로 나타났다. 그러나, 우연상황에서 변이성 설명과 표집분포의 이해에 대한 사고에서 통계적으로 유의한 차이가 없는 것으로 나타났다. 그리고 초등학생들과 마찬가지로 각 요소별 수학영재학급 학생들의 사고 수준의 분포는 일반학급 학생들의 사고 수준의 분포와 상당 부분 중첩되며 일부 요소에서는 동일한 범위에 분포되어 있는 것으로 나타났다.
      초등학생과 중학생 모두 통계적 변이성에 대한 일부 사고 요소에서 수학영재학급 학생들과 일반학급 학생들의 사고 수준 사이에 통계적으로 유의한 차이가 있는 것으로 나타난 반면, 일부 요소에서는 그렇지 않은 것으로 나타났다. 그리고 수학영재학급 학생들의 통계적 사고 수준의 분포는 일반학급 학생들의 사고 수준의 분포와 상당 부분 중첩되며 일부 요소에서는 동일한 범위에 분포되어 있는 것으로 나타났다. 오랫동안 축척된 연구 결과들은 수학영재학급 학생들이 수학적 사고 능력에서 일반학급 학생들보다 상당히 우수하다는 것을 잘 보여준다. 그러나 일반학급 학생들과의 비교를 통해 수학영재학급 학생들의 통계적 사고 수준을 조사한 본 연구의 결과는 통계적 사고에서도 역시 그러한 경향이 나타난다고 확신하기는 어렵다는 것을 보여준다. 이러한 결과는 수학적 사고 능력과 통계적 사고 능력 사이의 관계가 불분명함을 보여주는 증거가 될 수 있다.
      번역하기

      통계는 수학과는 다른 영역을 탐구하며, 또한 통계적 탐구를 안내하는 통계 고유의 개념을 가지고 있다. 특히 통계적 사고는 경험적 자료를 이용한 귀납 추론에서 핵심이 되는 불확실성에 ...

      통계는 수학과는 다른 영역을 탐구하며, 또한 통계적 탐구를 안내하는 통계 고유의 개념을 가지고 있다. 특히 통계적 사고는 경험적 자료를 이용한 귀납 추론에서 핵심이 되는 불확실성에 대한 직관과 비결정론적 사고방식을 요구한다. 그러나 통계 학습을 위해 수와 연산, 비와 비율 등의 기본적인 개념부터 함수와 미적분 등의 고차원적 개념까지 수학이 필수적으로 요구된다. 이러한 이유로 연구자들은 수학적 사고와 통계적 사고의 공통점과 차이점, 수학적 추론 능력과 통계적 추론 능력 사이의 관계에 주목해 왔다.
      수학에서의 성취와 통계에서의 성취 사이의 관계를 조사한 일부 연구에서 비교적 강한 상관관계가 확인되었으나, 일부 연구에서는 매우 낮은 상관관계가 확인되었다. 그리고 수학적 추론 능력과 통계적 추론 능력 사이의 상관관계가 통계적 개념에 따라 다른 경향을 보임을 확인한 연구도 있다. 이와 같이 수학적 사고와 통계적 사고 사이의 관계에 대하여 상이한 연구결과가 제시되고 있으며, 또한 이에 대한 논의는 여전히 진행 중이다.
      본 연구에서는 수학적 사고 능력이 서로 다른 두 집단 간의 통계적 사고 능력 비교를 통해 수학적 사고 능력과 통계적 사고 능력 사이의 관계를 조사한다. 이를 위해 일반학급 학생들과의 비교를 통해 수학영재학급 학생들의 통계적 사고 능력은 어떠한지 조사하였다. 먼저 통계적 변이성에 대한 사고 요소를 변이성 인식, 변이성 설명, 변이성 제어, 변이성 모델링, 표본의 이해, 표집분포의 이해로 구분하였다. 그리고 각 요소에 대한 학생들의 사고 수준을 조사하기 위해 사고 수준 비교틀을 개발하고, 일반학급 학생들과 수학영재학급 학생들의 통계적 변이성에 대한 사고 수준을 조사하여 t-검정을 실시하였다. 연구결과는 다음과 같다.
      변이성 인식에 대한 사고는 측정상황과 우연상황 모두에서 5개의 수준으로 구분되었다. 변이성의 편재성 인식 부족(0 수준), 변이성 인정 불안정(1 수준), 하나의 실체로서 변이성 인식 부족(2 수준), 변이성을 하나의 실체로 인식(3 수준), 분포 개념의 발달(4 수준)로 구분되었다.
      변이성 설명에 대한 사고는 측정상황에서 5개의 수준으로 구분되었다. 변이성의 원인 설명에 대한 이해 부족(0 수준), 원인 인식 미흡(1 수준), 물리적 원인 제시(2 수준), 설명되지 않는 원인을 변이성의 근원으로 제시(3 수준), 설명되지 않는 원인을 의사-우연변이성으로 간주(4 수준)로 구분되었다. 우연상황에서도 역시 5개의 수준으로 구분되었다. 변이성의 원인 설명에 대한 이해 부족(0 수준), 원인 인식 미흡(1 수준), 물리적 원인 제시(2 수준), 우연변이성 제시(3 수준), 분포의 원인 제시(4 수준)로 구분되었다.
      변이성 제어에 대한 사고는 측정상황과 우연상황 모두에서 5개의 수준으로 구분되었다. 변이성 제어에 대한 인식 부족(0 수준), 물리적 제어 방법 미고려 그리고 통계적 방법의 부적절한 사용(1 수준), 물리적 제어 방법 미고려 그리고 통계적 방법의 적절한 사용(2 수준), 물리적 제어 방법 고려 그리고 통계적 방법의 부적절한 사용(3 수준), 물리적 제어 방법 고려 그리고 통계적 방법의 적절한 사용(4 수준)으로 구분되었다.
      변이성 모델링에 대한 사고는 5개의 수준으로 구분되었다. 변이성 모델링에 대한 인식 부족(0 수준), 극단적인 값에 주목(1 수준), 퍼짐이나 다수의 위치에 주목(2 수준), 중심에 주목(3 수준), 중심과 퍼짐 모두에 주목(4 수준)으로 구분되었다.
      표본의 이해에 대한 사고는 5개의 수준으로 구분되었다. 표본이 모집단의 일부분이라는 인식 부족(0 수준), 모집단의 부분집합으로 인식(1 수준), 모집단의 준비례적 축소버전으로 인식(2 수준), 편의없는 표본의 중요성 인식(3 수준), 무작위 표집의 영향 이해(4 수준)로 구분되었다.
      표집분포의 이해에 대한 사고는 5개의 수준으로 구분되었다. 표집변이성 인식 부족(0 수준), 표집변이성 인정(1 수준), 표본 통계량의 퍼짐에 주목(2 수준), 표본 통계량의 중심과 퍼짐에 주목(3 수준), 표본 크기와 표집변이성의 관계 인식(4 수준)으로 구분되었다.
      초등학교 수학영재학급 학생들과 일반학급 학생들의 사고 수준에 대한 t-검정 결과, 측정상황에서 변이성 설명, 측정상황에서 변이성 제어, 우연상황에서 변이성 제어, 변이성 모델링, 표본의 이해, 표집분포의 이해에 대한 사고에서 두 그룹 사이에 통계적으로 유의한 차이가 있는 것으로 나타났다. 그러나 측정상황과 우연상황에서 변이성 인식, 우연상황에서 변이성 설명에 대한 사고에서 통계적으로 유의한 차이가 없는 것으로 나타났다. 그리고 각 요소별 수학영재학급 학생들의 사고 수준의 분포는 일반학급 학생들의 사고 수준의 분포와 상당 부분 중첩되며 일부 요소에서는 동일한 범위에 분포되어 있는 것으로 나타났다.
      중학교 수학영재학급 학생들과 일반학급 학생들의 사고 수준에 대한 t-검정 결과, 측정상황에서 변이성 인식, 우연상황에서 변이성 인식, 측정상황에서 변이성 설명, 측정상황에서 변이성 제어, 우연상황에서 변이성 제어, 변이성 모델링, 표본의 이해에 대한 사고에서 통계적으로 유의한 차이가 있는 것으로 나타났다. 그러나, 우연상황에서 변이성 설명과 표집분포의 이해에 대한 사고에서 통계적으로 유의한 차이가 없는 것으로 나타났다. 그리고 초등학생들과 마찬가지로 각 요소별 수학영재학급 학생들의 사고 수준의 분포는 일반학급 학생들의 사고 수준의 분포와 상당 부분 중첩되며 일부 요소에서는 동일한 범위에 분포되어 있는 것으로 나타났다.
      초등학생과 중학생 모두 통계적 변이성에 대한 일부 사고 요소에서 수학영재학급 학생들과 일반학급 학생들의 사고 수준 사이에 통계적으로 유의한 차이가 있는 것으로 나타난 반면, 일부 요소에서는 그렇지 않은 것으로 나타났다. 그리고 수학영재학급 학생들의 통계적 사고 수준의 분포는 일반학급 학생들의 사고 수준의 분포와 상당 부분 중첩되며 일부 요소에서는 동일한 범위에 분포되어 있는 것으로 나타났다. 오랫동안 축척된 연구 결과들은 수학영재학급 학생들이 수학적 사고 능력에서 일반학급 학생들보다 상당히 우수하다는 것을 잘 보여준다. 그러나 일반학급 학생들과의 비교를 통해 수학영재학급 학생들의 통계적 사고 수준을 조사한 본 연구의 결과는 통계적 사고에서도 역시 그러한 경향이 나타난다고 확신하기는 어렵다는 것을 보여준다. 이러한 결과는 수학적 사고 능력과 통계적 사고 능력 사이의 관계가 불분명함을 보여주는 증거가 될 수 있다.

      더보기

      다국어 초록 (Multilingual Abstract)

      Statistics studies areas apart from mathematics and has its own unique concepts to guide statistical exploration. In particular, statistics requires a sound mind-set and acknowledgment of uncertainty which are crucial for inductive reasoning about empirical data. Although statistics is a separate field on its own, it works in tandem with mathematics; thus research has often compared statistics and mathematics in various respects and examined the relationship between students’ performance in both fields.
      Studies examining the relationship between students’ performance in mathematics and statistics present a variety of opinions. For instance, some studies identified a strong relationship between students’ performance in the two fields while others found a very weak relationship. Still, others argued that the relationship between the performances in these two fields depends on the students’ grasp of statistical concepts or ideas that were selected to measure their statistical aptitude. In other words, the relationship between statistical and mathematical ability is at best inconclusive and studies regarding this issue are still ongoing. This study aims to shed light on this issue by examining the statistical abilities of mathematically talented students.
      This study investigates the relationship between statistical and mathematical ability by comparing cognitive abilities of mathematically talented students in statistics with those of non-talented students. Because there is no conceptual framework suitable for examining hierarchical cognitive levels for statistical abilities, based on the literature review, this study first decomposes statistical variability thinking into six components: the noticing of variability, the explaining of variability, the controlling for variability, the modeling of variability, understanding of sample, and understanding of sampling distribution. This study then develops frameworks of hierarchical cognitive levels for comparing the thinking levels of mathematically talented and non-talented students of statistical variability. After analyzing the mathematically talented students’ thinking levels of statistical variability, this study compares them with those of the non-talented students.
      The finding of this study are outlined below:
      The framework for students’ noticing of variability consists of five hierarchical cognitive levels in both the measurement and chance settings: unawareness of the omnipresence of variability (level 0), inconsistent unawareness of variability (level 1), no recognition of variability as an entity (level 2), consideration of variability as an entity (level 3), and development of the concept of distribution (level 4).
      The framework for students’ explaining of variability consists of five hierarchical cognitive levels: in the measurement setting, no awareness of the causes (level 0), insufficient understanding of the causes (level 1), consideration of physical causes (level 2), consideration of unexplained causes as the source of variability (level 3), and consideration of unexplained causes as quasi-chance variability (level 4); in the chance setting, lack of awareness of the causes (level 0), insufficient understanding of the causes (level 1), consideration of physical causes (level 2), recognition of chance variability (level 3), and consideration of the causes of distribution (level 4).
      The framework for students’ controlling for variability consists of five hierarchical cognitive levels in both the measurement and chance settings: lack of awareness of control for variability (level 0), no consideration of physical control and inappropriate use of statistical control (level 1), no consideration of physical control and appropriate use of statistical control (level 2), consideration of physical control and inappropriate use of statistical control (level 3), and consideration of physical control and appropriate use of statistical control (level 4).
      The framework for students’ modeling of variability consists of five hierarchical cognitive levels: no data-based decision (level 0), extreme-value-based decision (level 1), spread-based decision (level 2), center-based decision (level 3), and distribution-based decision (level 4).
      The framework for students’ understanding of sample consists of five hierarchical cognitive levels: no recognition sample of a part of the population (level 0), consideration of samples as subsets of the population (level 1), consideration of samples as a quasi-proportional, small-scale version of the population (level 2), recognition of the importance of unbiased samples (level 3), and recognition of the effect of random sampling on samples (level 4).
      The framework for students’ understanding of sampling distribution consists of five hierarchical cognitive levels: lack of recognition of sampling variability (level 0), confusion of data in a sample with sample statistics (level 1), focus on spread of sample statistics (level 2), focus on the distribution of sample statistics (level 3), recognition of the relationship between sample size and sampling variability (level 4).
      Results of the comparison of mathematically talented and non-talented fifth graders using t-tests show a statistically significant difference between the two groups in their ability to explain variability in the measurement setting, control for variability both in the measurement and chance settings, model variability, their understanding of sample, and understanding of sampling distribution. However, no statistically significant difference was found between the two groups in their noticing of variability both in the measurement and chance settings and their ability to explain variability in the chance setting. The distributions of thinking levels of these two groups of students overlap extensively in each component. For some components, the distributions coincided with each other (e.g., Noticing (C), Explaining (C), and Controlling (C)). For other components, some talented students performed lower than their non-talented counterparts (e.g., Modeling).
      Results of the comparison of mathematically talented and non-talented eighth graders using t-tests reveal a statistically significant difference between the two groups in their noticing of variability both in the measurement and chance settings, their ability to explain variability in the measurement setting, control for variability both in the measurement and chance settings, model variability, and in their understanding of sample. However, no statistically significant difference was found between the two groups in their ability to explain variability in the chance setting and in their understanding of sampling distribution. Just as that for the elementary students, the distributions of thinking levels of these two groups of secondary students overlap extensively in each component. For some components, the distributions coincided with each other (e.g., Controlling (C) and Modeling (C)). For other components, some talented students performed lower than the non-talented students (e.g., Sampling Distribution).
      These results imply that it is difficult to say that the statistical abilities of mathematically talented students are at the same levels as their mathematical abilities when compared with non-talented students. In other words, although mathematically talented students are better than non-talented students in terms of mathematical ability in general, their statistical abilities did not exhibit the same pattern. The statistical abilities of mathematically talented students overlap with those of non-talented students. Some talented students performed better than non-talented students in some components, some performed the same as the non-talented in some components, and still some performed lower than the non-talented in other components. These results can be evidence of unclear relationship between mathematical and statistical abilities.
      번역하기

      Statistics studies areas apart from mathematics and has its own unique concepts to guide statistical exploration. In particular, statistics requires a sound mind-set and acknowledgment of uncertainty which are crucial for inductive reasoning about emp...

      Statistics studies areas apart from mathematics and has its own unique concepts to guide statistical exploration. In particular, statistics requires a sound mind-set and acknowledgment of uncertainty which are crucial for inductive reasoning about empirical data. Although statistics is a separate field on its own, it works in tandem with mathematics; thus research has often compared statistics and mathematics in various respects and examined the relationship between students’ performance in both fields.
      Studies examining the relationship between students’ performance in mathematics and statistics present a variety of opinions. For instance, some studies identified a strong relationship between students’ performance in the two fields while others found a very weak relationship. Still, others argued that the relationship between the performances in these two fields depends on the students’ grasp of statistical concepts or ideas that were selected to measure their statistical aptitude. In other words, the relationship between statistical and mathematical ability is at best inconclusive and studies regarding this issue are still ongoing. This study aims to shed light on this issue by examining the statistical abilities of mathematically talented students.
      This study investigates the relationship between statistical and mathematical ability by comparing cognitive abilities of mathematically talented students in statistics with those of non-talented students. Because there is no conceptual framework suitable for examining hierarchical cognitive levels for statistical abilities, based on the literature review, this study first decomposes statistical variability thinking into six components: the noticing of variability, the explaining of variability, the controlling for variability, the modeling of variability, understanding of sample, and understanding of sampling distribution. This study then develops frameworks of hierarchical cognitive levels for comparing the thinking levels of mathematically talented and non-talented students of statistical variability. After analyzing the mathematically talented students’ thinking levels of statistical variability, this study compares them with those of the non-talented students.
      The finding of this study are outlined below:
      The framework for students’ noticing of variability consists of five hierarchical cognitive levels in both the measurement and chance settings: unawareness of the omnipresence of variability (level 0), inconsistent unawareness of variability (level 1), no recognition of variability as an entity (level 2), consideration of variability as an entity (level 3), and development of the concept of distribution (level 4).
      The framework for students’ explaining of variability consists of five hierarchical cognitive levels: in the measurement setting, no awareness of the causes (level 0), insufficient understanding of the causes (level 1), consideration of physical causes (level 2), consideration of unexplained causes as the source of variability (level 3), and consideration of unexplained causes as quasi-chance variability (level 4); in the chance setting, lack of awareness of the causes (level 0), insufficient understanding of the causes (level 1), consideration of physical causes (level 2), recognition of chance variability (level 3), and consideration of the causes of distribution (level 4).
      The framework for students’ controlling for variability consists of five hierarchical cognitive levels in both the measurement and chance settings: lack of awareness of control for variability (level 0), no consideration of physical control and inappropriate use of statistical control (level 1), no consideration of physical control and appropriate use of statistical control (level 2), consideration of physical control and inappropriate use of statistical control (level 3), and consideration of physical control and appropriate use of statistical control (level 4).
      The framework for students’ modeling of variability consists of five hierarchical cognitive levels: no data-based decision (level 0), extreme-value-based decision (level 1), spread-based decision (level 2), center-based decision (level 3), and distribution-based decision (level 4).
      The framework for students’ understanding of sample consists of five hierarchical cognitive levels: no recognition sample of a part of the population (level 0), consideration of samples as subsets of the population (level 1), consideration of samples as a quasi-proportional, small-scale version of the population (level 2), recognition of the importance of unbiased samples (level 3), and recognition of the effect of random sampling on samples (level 4).
      The framework for students’ understanding of sampling distribution consists of five hierarchical cognitive levels: lack of recognition of sampling variability (level 0), confusion of data in a sample with sample statistics (level 1), focus on spread of sample statistics (level 2), focus on the distribution of sample statistics (level 3), recognition of the relationship between sample size and sampling variability (level 4).
      Results of the comparison of mathematically talented and non-talented fifth graders using t-tests show a statistically significant difference between the two groups in their ability to explain variability in the measurement setting, control for variability both in the measurement and chance settings, model variability, their understanding of sample, and understanding of sampling distribution. However, no statistically significant difference was found between the two groups in their noticing of variability both in the measurement and chance settings and their ability to explain variability in the chance setting. The distributions of thinking levels of these two groups of students overlap extensively in each component. For some components, the distributions coincided with each other (e.g., Noticing (C), Explaining (C), and Controlling (C)). For other components, some talented students performed lower than their non-talented counterparts (e.g., Modeling).
      Results of the comparison of mathematically talented and non-talented eighth graders using t-tests reveal a statistically significant difference between the two groups in their noticing of variability both in the measurement and chance settings, their ability to explain variability in the measurement setting, control for variability both in the measurement and chance settings, model variability, and in their understanding of sample. However, no statistically significant difference was found between the two groups in their ability to explain variability in the chance setting and in their understanding of sampling distribution. Just as that for the elementary students, the distributions of thinking levels of these two groups of secondary students overlap extensively in each component. For some components, the distributions coincided with each other (e.g., Controlling (C) and Modeling (C)). For other components, some talented students performed lower than the non-talented students (e.g., Sampling Distribution).
      These results imply that it is difficult to say that the statistical abilities of mathematically talented students are at the same levels as their mathematical abilities when compared with non-talented students. In other words, although mathematically talented students are better than non-talented students in terms of mathematical ability in general, their statistical abilities did not exhibit the same pattern. The statistical abilities of mathematically talented students overlap with those of non-talented students. Some talented students performed better than non-talented students in some components, some performed the same as the non-talented in some components, and still some performed lower than the non-talented in other components. These results can be evidence of unclear relationship between mathematical and statistical abilities.

      더보기

      참고문헌 (Reference) 논문관계도

      1 Schmidt, R., "Attention", In P.Robinson(Ed.),Cognition and second language instruction(pp.3-32).Cambridge,UK: Cambridge University Press, 2001

      2 Moore, "Uncertainty", In L.A. Steen(Ed.),On the shoulders of giants (pp.95-137) Washington,Dc: National Academy Press, 1990

      3 Howard,B.R., "Control of variability", Institute for Laboratory Animal Research Journal,43(4),194-201 [http://dels-old.nas.edu/ilar_n/ilarjournal/43_v4304Howard.pdf], 2002

      4 Reading,C., Shaughnessy.J,M., "Reasoning about variation", In D.Ben-Zvi & J.Garfield(Eds.),The challenge of developing statistical literacy,reasoning,and thinking(pp.201-226).Dordrecht,The Netherlands: Kluwer Academic Publishers, 2004

      5 Wild, "The concept of distribution", Statistics Education Research Journal,5(2),10-26, 2006

      6 Garfield, "Assessing statistical reasoning", Statistics Education Research Journal,2(1),22-38, 2003

      7 Moritz,J.B., Watson,J.M., "Developing concepts of sampling", Journal of Research in Mathematics Education,31(1),44-70, 2000

      8 Denzin, Norman K, "Handbook of qualitative research", Sage Publications, Thousand Oaks, CA: Sage, 1994

      9 Watson,J.M., "Developing reasoning about samples", In D.Ben-Zvi & J.Garfield(Eds.),The challenge of developing statistical literacy,reasoning,and thinking(pp.277-294).Dordrecht,The Netherlands: Kluwer Academic Publishers, 2004

      10 Passow,A.H., "The nature of giftedness and talent", Gifted Child Quarterly,25,5-10, 1981

      1 Schmidt, R., "Attention", In P.Robinson(Ed.),Cognition and second language instruction(pp.3-32).Cambridge,UK: Cambridge University Press, 2001

      2 Moore, "Uncertainty", In L.A. Steen(Ed.),On the shoulders of giants (pp.95-137) Washington,Dc: National Academy Press, 1990

      3 Howard,B.R., "Control of variability", Institute for Laboratory Animal Research Journal,43(4),194-201 [http://dels-old.nas.edu/ilar_n/ilarjournal/43_v4304Howard.pdf], 2002

      4 Reading,C., Shaughnessy.J,M., "Reasoning about variation", In D.Ben-Zvi & J.Garfield(Eds.),The challenge of developing statistical literacy,reasoning,and thinking(pp.201-226).Dordrecht,The Netherlands: Kluwer Academic Publishers, 2004

      5 Wild, "The concept of distribution", Statistics Education Research Journal,5(2),10-26, 2006

      6 Garfield, "Assessing statistical reasoning", Statistics Education Research Journal,2(1),22-38, 2003

      7 Moritz,J.B., Watson,J.M., "Developing concepts of sampling", Journal of Research in Mathematics Education,31(1),44-70, 2000

      8 Denzin, Norman K, "Handbook of qualitative research", Sage Publications, Thousand Oaks, CA: Sage, 1994

      9 Watson,J.M., "Developing reasoning about samples", In D.Ben-Zvi & J.Garfield(Eds.),The challenge of developing statistical literacy,reasoning,and thinking(pp.277-294).Dordrecht,The Netherlands: Kluwer Academic Publishers, 2004

      10 Passow,A.H., "The nature of giftedness and talent", Gifted Child Quarterly,25,5-10, 1981

      11 Gould,R., "Variability: One statistician's view", Statistics Education Research Journal,3(2),7-16, 2004

      12 Bakker,A., Gravemeijer,K.P.E., "Learning to reason about distribution", In D.Ben-Zvi & J.Garfield(Eds.),The challenge of developing statistical literacy,reasoning,and thinking(pp.147-168).Dordrecht,The Netherlands: Kluwer Academic Publishers, 2004

      13 Cobb, Moore, "Mathematics, statistics, and teaching", The American Mathematical Monthly,104(9),801-823, 1997

      14 Prado,T.M., Wieczerkowski,W., Cropley,A.J., "Nurturing talents/gifts in mathematics", In K.A.Heller,F.J.Monks,R.J.Sternberg, & R.F.Subotnik(Eds.),International handbook of giftedness and talend (pp.413-426).NY: Elsevier, 2000

      15 delMas, Garfield, Chance, "Reasoning about sampling distributions", In D.Ben-Zvi & J.Garfield(Eds.),The challenge of developing statistical literacy,reasoning,and thinking(pp.259-324).Dordrecht,The Netherlands: Kluwer Academic Publishers, 2004

      16 Sternberg.R.J, "Definition and conceptions of giftedness", Thousand Oaks, CA: Corwin Press, 2004

      17 Wild, Pfannkuch, "Statistical thinking in empirical enquiry", International Statistical Review,67(3),223-265 [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.104.376&rep=rep1&type=pdf, 1999

      18 Fleiss, "Statistical methods for rates and proportion", New York: Wiley, 1981

      19 Bar-Hillel,M., "The role of sample size in sample evaluation", Organizational Behavior and Human Performance,24,245-257, 1979

      20 Greenes, "Identifying the gifted student in mathematics", Arithmetic Teacher,28(6),14-17, 1981

      21 Jones,G.A., Thornton,C.A., Langrall,C.W., Mooney,E.S., "Models of development in statistical reasoning", In D.Ben-Zvi & J.Garfield(Eds.),The challenge of developing statistical literacy,reasoning,and thinking(pp.97-117).Dordrecht,The Netherlands: Kluwer Academic Publishers, 2004

      22 Hoerl R.W, Snee,R., Hiromi,J., Hare,L., "The role of statistical thinking in management", Quality Progress,28(2),53-60, 1995

      23 Han,S.Y., Sherin,M.G., "Teacher learning in the context of a video club", Teaching and Teacher Education, 20,163-183, 2004

      24 Wild,C.J., Pfannkuch,M., "Towards an understanding of statistical thinking", In D.Ben-Zvi & J.Garfield(Eds.),The challenge of developing statistical literacy,reasoning,and thinking(pp.17-46).Dordrecht,The Netherlands: Kluwer Academic Publishers, 2004

      25 Bakker,A., "Reasoning about shape as a Pattern in variability", Statistics Education Research Journal,3(2),64-83, 2004

      26 Watson, Jane, "Statistical literacy at school : growth and goals", L. Erlbaum Associates, Mahwah, NJ: Lawrence Elrbaum Associates, 2006

      27 Garfield, "The challenge of developing statistical reasoning", Journal of Statistical Education,10(3), 2002

      28 Wheatley, "Mathematics curriculum for the gifted and talented", In J.VanTassel-Vaska & S.M.Reis(Eds.),Curriculum for gifted and talented students(pp.137-146). Thousands, CA: Corwin Press, 1983

      29 Miles, Matthew B, "Qualitative data analysis : an expanded sourcebook", Sage Publications, Thousand Oaks: Sage Publications, 1994

      30 Moore,D.S., McCabe,G.P., "Introduction to the practice of statistics(2nd ed.)", New York: W.H.Freeman & Co., 1993

      31 Cobb, Moore, "Statistics and Mathematics: Tension and Cooperation", The American Mathematical Monthly,107(7),615-630, 2000

      32 Moore,D.S., "New pedagogy and new content: The case of statistics", International Statistical Review,65(2),123-165, 1997

      33 Howley, Aimee, "Teaching gifted children : principles and strategies", Little, Brown, Boston Toronto: Little,Brown and Company, 1986

      34 Collis K.F, Biggs,J.B., "Evaluating the Quality of Learning: The SOLO Taxonomy", Academic Press,New York, 1982

      35 delMas,R.C., "A comparison of mathematical and statistical reasoning", In D.Ben-Zvi & J.Garfield(Eds.),The challenge of developing statistical literacy,reasoning,and thinking(pp.77-95).Dordrecht,The Netherlands: Kluwer Academic Publishers, 2004

      36 Ben-Zvi,D., "Reasoning about variability in comparing distributions", Statistics Education Research Journal,3(2),42-63, 2004

      37 Garfield.J.B., Chance,B., "Assessment in statistics education:Issues and challenges", Mathematical Thinking and learning.2(1&2),99-125 [https://app.gen.umn.edu/artist/articles/Garfield02.pdf], 2000

      38 Lamb,L.C., Philipp,R.A., Jacobs,V.R., "Professional noticing of childrens mathematical thinking", Journal for Research in Mathematics Education,41(2),169-202, 2010

      39 Rimm, "The characteristics approach : Identification and beyond", Gifted Child Quarterly,28(4),181-187, 1984

      40 Goetz, Judith Preissle, "Ethnography and qualitative design in educational research", Academic Press, Orlando,FL: Academic Press, 1984

      41 Bruce,B., Tenney,Y., Rubin,A., "Learning about sampling: Trouble at the core of statistics", In D.Vere-Jones(ed.),Proceedings of the Third International Conference on Teaching Statics(pp.314-319).Voorburg,The Netherlands: International Statistical Institute, 1990

      42 Snee, "Statistical thinking and its contribution to total quality", The American Statistician,44(2),116-121, 1990

      43 Krutetskii,V. A, "The Psychology of mathematical abilities in schoolchildren", The University of Chicago Press, The University of Chicago Press, 1976

      44 Renzulli, Joseph S, "Identification of students for gifted and talented programs", Corwin Press, Thousand Oaks, CA: Corwin Press, 2004

      45 Merriam, Sharan B, "Qualitative research and case study applications in education", Jossey-Bass Publishers, San Francisco: Jossey-Bass Publishers, 1998

      46 Ramsey, Fred L, "The statistical sleuth : a course in methods of data analysis", Duxbury Press, Pacific Grove,CA: Duxbury, 1997

      47 Nisbett,R.E., Kunda,Z., Jepson,C., Krantz,Z., "Use of statistical heuristics in everyday inductive reasoning", Psychological Review,90(4),339-363, 1983

      48 Park,C.-S., "Validation study of gifted rating scale fo relementary school", Unpublished doctoral dissertation,Seoul National University.(in Korean), 2006

      49 Triggs,C., Pfannkuch,M., Wild,C.J., "Assessment on a budget:Using traditional methods imaginatively", In I.Gal and J.Garfield (Eds.),The assessment challenge in statistics education(pp.205-220). Amsterdam,Netherlands:IOS Press, 1997

      50 Reid,J., Reading,C., "Consideration of variation: A model for curriculum development", Proceedings of the IASE 2004 Roundtable.Lund,Sweden[http://www.stat.auckland.ac.nz/~iase/publications/rt04/2.3_Reading&Reid.pdf], 2004

      51 Tsamir,P., Dreyfus,T., "Ben's consolidation of knowledge structures about infinite sets", Journal of Mathematical Behavior.23(3),271-300, 2004

      52 Jolliffe,F., "Issues in constructing assessment instruments for the classroom", In I.Gal and J.Garfield (Eds.),The assessment challenge in statistics education(pp.191-204). Amsterdam,Netherlands:IOS Press, 1997

      53 Reid,J., Reading,C., "Measuring the development of students'consideration of variation", Statics Education Research Journal,7(1),40-59, 2008

      54 Ko,E.S., Song,S.H., Lee,K.H., "The role of images between visual thinking and analytic thinking", School Mathematics,10(1),63-78.(in Korean), 2008

      55 Konold,C., Pollatsek,A., "Conceptualizing an average as a stable feature of a noisy process", In D.Ben-Zvi & J.Garfield(Eds.),The challenge of developing statistical literacy,reasoning,and thinking(pp.169-199).Dordrecht,The Netherlands: Kluwer Academic Publishers, 2004

      56 Pfannkuch, "Building sampling concepts for statistical inference: A case study", Paper presented at the 11st International Congress on Mathematics Education,Monterrey,Mexico, 2008

      57 Tsamir,P., Dreyfus,T., "Comparing infinite sets - a process of abstraction: The case of Ben", Journal of Mathematical Behavior.21,1-23, 2002

      58 Assouline,S.G., "Elementary students who can do junior high math: Policy or pedagogy", In N.Colangelo & S.G.Assouline(Eds.),Talent development IV: Proceedings form the 1998 Henry B.and Jocelyn Wallace National Research Symposium On Talent Development(pp.123-134).Scottsdale,AZ; Great Potential Press, 2001

      59 Saldanha, Thompson, "Conceptions of sample and their relationship to statistical inference", Educational Studies in Mathematics,51,257-270, 2002

      60 Gagne,F., "Giftedness and talent: Reexamining a reexamination of the definitions", Gigted Child Quarterly,29,103-112, 1985

      61 Stigler, Stephen M, "The history of statistics : the measurement of uncertainty before 1900", Belknap Press of Harvard University Press, USA: Harvard University Press, 2003

      62 Song,S.H., Kim,J.W., "A case study on mathematical thinking characteristics of a gifted child", Journal of Educational Research in Mathematics,14(1),89-110.(in Korean), 2004

      63 Schau,C., Mattern,M., "Assessing students' connected understanding of statistical relationships", In I.Gal and J.Garfield (Eds.),The assessment challenge in statistics education(pp.91-104). Amsterdam,Netherlands:IOS Press, 1997

      64 Watson, Torok, "Development of the concept of statistical variation: An exploratory study", Mathematical Education Research Journal,12(2),147-169 [http://www.merga.net.au/documents/MERJ_12_2_Torok&Watson.pdf], 2000

      65 Van Es, Sherin, "Mathematics Teachers' "Learning to Notice" in the Context of a Video Club", Teaching and Teacher Education, 24,244-276, 2008

      66 Creswell, John W, "Research design : qualitative, quantitative, and mixed methods approaches", SAGE Publications, Thousand Oaks,CA: Sage Publications, 2003

      67 Mooney, "A framework for characterizing Middle School Students' statistical thinking", Mathematical Thinking and Learning.4(1),23-63, 2002

      68 Ko,E.S., Lee,K.H., "Are mathematically talented elementary students also talented in statisticsv", In B.Sirraman & K.H.Lee,The elements of creativity and giftedness in mathe matics(pp.29-43).Rotterdam,The Netherlands: Sense Publishers, 2011

      69 Lipson,K., "The role of the sampling distribution in understanding statistical inference", Mathematics Education Research Journal,15(3),270-287, 2003

      70 Kim,M.J., Song,S.H., Lee,K.H., "A Study on the algebraic thinking of mathematically gifted elementary students", School Mathematics,10(1),23-42.(in Korean), 2008

      71 Primi,C., Chiesi,F., "Cognitive and non-cognitive factors related to students' statistics achievement", Statistics Education Research Journal,9(1),6-26, 2010

      72 Schneider.W, "Giftedness, expertise, and exceptional performance: A developmental perspective", In K.A.Heller,F.J.Monks,R.J.Sternberg, & R.F.Subotnik(Eds.),International handbook of giftedness and talend (pp.165-178).NY: Elsevier, 2000

      73 Song,S.H., Chong,Y.O., Chang,H.W., "Mathematically gifted 6th grade students' proof ability for a geometric problem", Journal of Educational Research in Mathematics,16(4),327-344.(in Korean), 2006

      74 Shore,F.S., Cooper,L.L., "The effects of data and graph type on concepts and visualizations of variability", Journal of Statistics Education,18(2),1-16, 2010

      75 Reid,J., Reading,C., "An emerging hierarchy of reasoning about distribution: From a variation perspective", Statistics Education Research Journal,5(2),46-68, 2006

      76 Schmidt, "Deconstructing consciousness in search of useful definitions for applied linguistics", AILA Review,11,11-26, 1994

      77 Song, S., Lee, K., Han, D., Na, G., "Mathematically gifted students' problem solving approaches on conditional probability", unknown, School Mathematics,9(3),397-408.(in Korean), 2007

      78 Cobb,P.A., "Individual and collective mathematics development:The case of statistical data analysis", Mathematical thinking and learning.1(1),5-43, 1999

      79 Lee,K., "Three types of reasoning and creative informal proofs by mathematically gifted students", Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education,Vol.3,241-248.Melbourne,Australia, 2005

      80 Scheaffer,R., Franklin,C.A., Moreno,J., Perry,M., Peck,R., Mewborn,D., Kader,G., "Guidelines for Assessment and Instruction in Statistics Education (GAISE) Report Pre-K-12", Alexandria: VA: American Statistical Association, 2007

      81 Reid,J., Reading,C., "Listen to the students: Understandingb and supporting students' reasoning about variation", 7th International Conference on Teaching Statistics(ICOTS-7).Salvador,Braxil, 2006

      82 Galagedera,D., "Is remedial mathematics a real remedy? Evidence from learning statistics at tertiary level", International Journal of Mathematics Education Science and Technology,29,475-480, 1998

      83 Gardner.R.C, Lalonde,R., "Statistics as a secondlanguage?: A model for predicting performance in psychology students", Canadian Journal of Behavioural Science,25(1),108-125, 1993

      84 Lipson,K., "The role of the sampling distribution in developing understanding of statistical inference", Unpublished ph.D thesis,Swinburne University of Technology,Melbourne, 2000

      85 Medina,E., Rossman,A., Chance,B., "Some importan tcomparisons between statistics and mathematics, and why teachers should care", In G.F.Burnill & P.C.Elliott (Eds.),Thinking and reasoning with data and chance: Sixty-eight yearbook(pp.343-375),Reston,VA: NCTM, 2006

      86 Carmona,M.J., "Mathematical background and attitudes toward statistics in a sample of undergraduate students", Paper presented at the 10th International Congress on Mathematics Education.Copenhagen,Denmark. [http://www.stat.aucklland.ac.nz/~iase/publications/11/Carmona.doc], 2004

      87 Lipson,K., "The role of computer based technology in developing understanding of the sampling distribution", In B.Phillips(Ed.),Proceedings of the 6th International Conference on Teaching Statics.[CD-ROM] Voorburg,The Netherlands: International Statistics Institute [http://www.stat.auckland.ac.nz/~iase/publications/1/6c1_lips.pdf], 2002

      88 Lee,K.H., Park,M.M, Park,M.S., Hong,J.K., Yoo,Y.J., "An investigation of mathematically high achieving student's understanding of statistical concepts", School Mathematics,12(4),547-561.(in Korean), 2010

      89 Bright,G.W., Curcio,F.R., friel,S.N., "Making sense of graphs: Critical factors influencing comprehension and instructional implications", Journal of Research in Mathematics Education,32(2),124-158, 2001

      90 Garfield.J.B., Franklin,C.A., "The GAISE project:Developing statistics education guidelines for grades Pre-K-12 and college courses", In G.F.Burnill & P.C.Elliott (Eds.),Thinking and reasoning with data and chance: Sixty-eight yearbook(pp.343-375),Reston,VA: National Council of Teachers of Mathematics, 2006

      91 Yim,J.H., Heo,J.Y., Song,S.H., "Analysis on the types of mathematically gifted students' justification on the tasks of figure division", Journal of Educational Research in Mathematics,16(1),79-94.(in Korean), 2006

      92 Woodward,G., Galagedera,D., Degamboda,S., "An investigation of how perceptions of mathematics ability can affect elementary statistics performance", International Journal of Mathematics Education Science and Technology,31,679-689, 2000

      93 Confrey,J., Makar,K., "Chunks clumps and spread out:Secondary preservice teachers' informal notions of variation and distribution", In C.Lee(Ed.),Proceedings of the Fourth International Research Forum on Statistical Reasoning,Thinking and Literacy (SRTL-3).Mount Pleasant,Michigan:Central Michigan University, 2003

      94 Ko,E.S., Song,S.H., Lee,K.H., "The analysis on mathematically gifted students' activities constructing definition of a regular polyhedron", Journal of Gifted/Talented Education,18(1),53-77.(in Korean), 2008

      95 Song,S.H., Shin,E.J., "Case analysis on the signification model of three signs in a mathematically gifted student's abstraction process", School Mathematics,9(1),161-180.(in Korean), 2007

      96 Minor,L.L., Benbow,C.P., "Cognitive profiles of verballyand mathematically precocious students: Implications for identification of the gifted", Gifted Child Quarterly,34(1),21-26, 1990

      97 Lee,K.H., Choi,N.K., Song,S.H., "Mathematically giftedstudents' justification patterns and mathematical representation on a task of spatial geometry", School Mathematics,9(4),487-505.(in Korean), 2007

      98 Ko,E.S., Lee,K.H., "Study on levels of thinking of elementary and middle school students on the task of explaining and dealing with variability", Journal of Educational Research in Mathematics,21(2),201-220.(in Korean), 2011

      99 Ko,E.S., Lee,K.H., "Study on levels of mathematically gifted students' understanding of statistical samples through comparison with non-gifted students", Journal of Gifted/Talented Education,21(2),287-307(in Korean), 2011

      100 Yim,J.H., Kwon,S.I., Kim,J.W., Chong,Y.O., Song,S.H., "Analysis of the algebraic generalization on the mathematically gifted elementary school students' process ofsolving a Line Peg Puzzle", Journal of Educational Research in Mathematics,17(2),163-178.(in Korean), 2007

      101 Ha cking, "T he em e rg enc e of p robability : a p hilos op hical s tudyof early id eas about p robability ind uct ion and s tat is tical inf e renc e", Cambridge, England: Cambridge University Press, 1975

      102 Sriraman,B., "Gifted ninth graders notions of proof: Investigating parallels in approaches of mathematically gifted students and professional mathematicians", Journal for the Education of the Gifted,27(4),267-292, 2004

      103 Sriraman,B., "Mathematical giftedness, problem solving, and the ability to for mulate generalizations: The problem-solving experiences of four gifted students", Journal of Secondary Gifted Education,14,151-165, 2003

      104 Biehler,R., "Probabilistic thinking, statistical reasoning, and thesearch for causes: Do we need a probabilistic revolution after wehave taught data analysis?", In J.Garfield(Ed.),Proceedings of the Fourth Internaltional Conference On Teaching Statistics(ICOTS 4),Marrakech,Morocco: University of Minnesota[ http://lama.uni-paderborn.de/fileadmin/Mathematik/People/biehler/Homepage/pubs/BiehlerIcots19941.pdf], 1994

      105 Leow,R.P., "Do learners notice enhanced forms while interacting with the L2?An online and offline study of the role of written input enhancement in L2 reading", Hispania,84(3),496-509, 2001

      106 Scott,J., Wisenbaker,J., Nasser,F., "Structural equation models relating attitude about and achievement in introductory statistics courses: a comparison of results from U.S. and Israel", Proceedings of the 24th Conference of the International Group for the Psychology of Mathematics Education.Akito,Japan, 2000

      107 Reid,J., Reading,C., "Reasoning about variation: A key to unlocking the mastery of distributions, Reasoning about variation:A key to unlocking the mystery of distributions", In K.Makar(Ed.),Proceedings of the Fourth International Research Forum on Statistical Reasoning,Thinking and Literacy(SRTL-4).Brisbane,Australia: University of Queensland, 2005

      108 Nasser,R.M., "Structural model of the effects of cognitive and affective factors on the achievement of Arabic-speaking pre-service teachers in introductory statistics", Journal of Statistics Education Volume,12(1),[www.amstat.org/publications/jse/v12n1/nasser.html], 2004

      109 Ko,E.S., Lee,K.H., "Analysis on mathematically gifted middle school students' problem solving process in the GSP environment: Focusing on visual reasoning and logical reasoning", Journal of Gifted/Talented Education,17(3),521-539.(in Korean), 2007

      110 Davydov,V.V., "Soviet studies in mathematics education Vol. 2.Types of generalization in instruction: logical and psychological problems in the structuring of school curricula", Translated from the Russian by J.Teller,edited by J.Kilpatrick.Reston,VA: NCTM.(Original work published 1972), 1990

      111 Saldanha,L., Thompson,P., "Exploring connections between sampling distributions and statistical inference: An analysis of students engagement and thinking in the context of instruction involving repeated sampling", International Electronic Journal of Mathematics Education,2(3),270-297, 2007

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼