<P>Ag nanowire transparent electrode has excellent transmittance and sheet resistance, yet its optical haze still needs to be improved in order for it to be suitable for display applications. Ag nanowires are known to have high haze because of t...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A107487227
2014
-
SCOPUS,SCIE
학술저널
13527-13534(8쪽)
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
<P>Ag nanowire transparent electrode has excellent transmittance and sheet resistance, yet its optical haze still needs to be improved in order for it to be suitable for display applications. Ag nanowires are known to have high haze because of t...
<P>Ag nanowire transparent electrode has excellent transmittance and sheet resistance, yet its optical haze still needs to be improved in order for it to be suitable for display applications. Ag nanowires are known to have high haze because of the geometry of the nanowire and the high light scattering characteristic of the Ag. In this study, a Au-coated Ag nanowire structure was proposed to reduce the haze, where a thin layer of Au was coated on the surface of the Ag nanowires using a mild [Au(en)<SUB>2</SUB>]Cl<SUB>3</SUB> galvanic displacement reaction. The mild galvanic exchange allowed for a thin layer of Au coating on the Ag nanowires with minimal truncation of the nanowire, where the average length and the diameter were 13.0 μm and 60 nm, respectively. The Au-coated Ag nanowires were suspended in methanol and then electrostatically sprayed on a flexible polycarbonate substrate that revealed a clear reduction in haze with a 2–4% increase in total transmittance, sheet resistance ranges of 80–90%, and 8.8–36.8 Ohm/sq. Finite difference time domain simulations were conducted for Au-coated Ag nanowires that indicated a significant reduction in the average scattering from 1 to 0.69 for Au layer thicknesses of 0–10 nm.</P><P><B>Graphic Abstract</B>
<IMG SRC='http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/aamick/2014/aamick.2014.6.issue-16/am502632t/production/images/medium/am-2014-02632t_0009.gif'></P><P><A href='http://pubs.acs.org/doi/suppl/10.1021/am502632t'>ACS Electronic Supporting Info</A></P>
Fouling-Tolerant Nanofibrous Polymer Membranes for Water Treatment
Quasi-Photonic Crystal Effect of TiCl3/Electrolyte Matrix in Unipolar Dye–Absorber Devices