RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Study on boiling heat transfer of surface modification based on Lattice Boltzmann and experiments

      한글로보기

      https://www.riss.kr/link?id=A108506515

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this paper, according to the microscopic nature and mesoscopic characteristics of lattice Boltzmann method, the boiling heat transfer of surfaces with different wettability is numerically simulated by using the pseudo-potential lattice Boltzmann me...

      In this paper, according to the microscopic nature and mesoscopic characteristics of lattice Boltzmann method, the boiling heat transfer of surfaces with different wettability is numerically simulated by using the pseudo-potential lattice Boltzmann method gas-liquid model.
      Firstly, under the local heat transfer condition, the nucleation mechanism of single bubble and the heat transfer effect of wall with different wettability are analyzed in detail through the characteristics of bubble automatic nucleation and interface automatic evolution. It not only overcomes the disadvantage that seed bubbles need to be placed in advance in the macroscopic flow model to simulate nuclear boiling, which makes it difficult to study the nucleation mechanism of bubbles, but also overcomes the disadvantage that Lennard-Jones potential in molecular dynamics cannot accurately describe the interaction between fluid molecules and solid molecules on the wall. Then, the boiling curves of non-mixed wettability surfaces are plotted by extending the scope of the study to multiple bubbles. On this basis, the bubble nucleation and heat transfer characteristics of the mixed wettability surface were studied.

      더보기

      참고문헌 (Reference) 논문관계도

      1 C. W. Hirt, "Volume of fluid(VOF)method for the dynamics of free boundaries" 39 (39): 201-225, 1981

      2 A. Márkus, "Simulation of evaporation by an extension of the pseudopotential lattice Boltzmann method : a quantitative analysis" 83 (83): 046705-, 2011

      3 H. O'Hanley, "Separate effects of surface roughness, wettability, and porosity on the boiling critical heat flux" 103 (103): 58-67, 2013

      4 Y. Yuichi, "Self assembled layers of alkanethiols on copper for protection against corrosion" 140 (140): 436-443, 1993

      5 A. E. Bergles, "Recent developments in enhanced heat transfer" 47 (47): 1001-1008, 2011

      6 B. J. Kim, "Rayleigh-Taylor instability for thin viscous gas films : application to critical heat flux and minimum film boiling" 80 : 150-158, 2015

      7 Q. Zou, "On pressure and velocity boundary conditions for the lattice Boltzmann BGK model" 9 (9): 1591-1598, 1996

      8 A. L. Kupershtokh, "On equations of state in a lattice Boltzmann method" 58 (58): 965-974, 2009

      9 A. Ladd, "Lattice-Boltzmann simulations of particle-fluid suspensions" 104 (104): 1191-1251, 2001

      10 A. Xc, "Lattice Boltzmann study of pool boiling heat transfer enhancement n structured surfaces" 139 : 588-599, 2019

      1 C. W. Hirt, "Volume of fluid(VOF)method for the dynamics of free boundaries" 39 (39): 201-225, 1981

      2 A. Márkus, "Simulation of evaporation by an extension of the pseudopotential lattice Boltzmann method : a quantitative analysis" 83 (83): 046705-, 2011

      3 H. O'Hanley, "Separate effects of surface roughness, wettability, and porosity on the boiling critical heat flux" 103 (103): 58-67, 2013

      4 Y. Yuichi, "Self assembled layers of alkanethiols on copper for protection against corrosion" 140 (140): 436-443, 1993

      5 A. E. Bergles, "Recent developments in enhanced heat transfer" 47 (47): 1001-1008, 2011

      6 B. J. Kim, "Rayleigh-Taylor instability for thin viscous gas films : application to critical heat flux and minimum film boiling" 80 : 150-158, 2015

      7 Q. Zou, "On pressure and velocity boundary conditions for the lattice Boltzmann BGK model" 9 (9): 1591-1598, 1996

      8 A. L. Kupershtokh, "On equations of state in a lattice Boltzmann method" 58 (58): 965-974, 2009

      9 A. Ladd, "Lattice-Boltzmann simulations of particle-fluid suspensions" 104 (104): 1191-1251, 2001

      10 A. Xc, "Lattice Boltzmann study of pool boiling heat transfer enhancement n structured surfaces" 139 : 588-599, 2019

      11 H. Liang, "Lattice Boltzmann simulations of water transport in gas diffusion layer of a polymer electrolyte membrane fuel cell" 195 (195): 3870-3881, 2010

      12 G. Shuai, "Lattice Boltzmann simulations for surface wettability effects in saturated pool boiling heat transfer" 85 : 635-646, 2015

      13 Q. Li, "Lattice Boltzmann modeling of boiling heat transfer : the boiling curve and the effects of wettability" 85 : 787-796, 2015

      14 D. A. Medvedev, "Lattice Boltzmann model for simulation of the electric breakdown in liquids" 1 (1): 811-818, 2010

      15 K. H. Luo, "Lattice Boltzmann methods for multiphase flow and phase-change heat transfer" 52 : 62-105, 2016

      16 S. D. Chen, "Lattice Boltzmann method for fluid flows" 30 (30): 329-329, 1998

      17 Y. H. Qian, "Lattice BGK models for navier-stokes equation" 15 : 603-607, 1992

      18 Q. Ma, "Experimental investigation of the effect of surface wettability on nucleate pool boiling" 40 (40): 635-638, 2019

      19 Y. Takata, "Effect of surface wettability on boiling and evaporation" 30 (30): 209-220, 2005

      20 C. H. Wang, "Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface" 115 (115): 659-669, 1993

      21 G. Son, "Dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface" 121 (121): 623-631, 1999

      22 Z. Guo, "Discrete lattice effects on the forcing term in the lattice Boltzmann method" 65 (65): 046308-, 2002

      23 S. Witharana, "Bubble nucleation on nano-to micro-size cavities and posts : an experimental validation of classical theory" 112 (112): 27-31, 2012

      24 K. Sankaranarayanan, "Bubble flow simulations with the lattice Boltzmann method" 54 : 4817-4823, 1999

      25 Y. Takata, "Boiling feature on a super water-repellent surface" 27 (27): 25-30, 2006

      26 G. Ming, "An investigation of microlayer beneath nucleation bubble by laser interferometric method" 57 (57): 183-189, 2013

      27 L. Dong, "An experimental investigation of enhanced pool boiling heat transfer from surfaces with micro/nano-structures" 71 : 189-196, 2014

      28 H. J. Jo, "A study of nucleate boiling heat transfer on hydrophilic, hydrophobic and heterogeneous wetting surfaces" 54 (54): 5643-5652, 2011

      29 L. W. Zhang, "A study of boiling on surfaces with temperature-dependent wettability by lattice Boltzmann method" 122 : 775-784, 2018

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼