RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Neuroanatomical and neurophysiological mechanisms of acoustic and weakly electric signaling in synodontid catfish

      한글로보기

      https://www.riss.kr/link?id=O112740793

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      To what extent do modifications in the nervous system and peripheral effectors contribute to novel behaviors? Using a combination of morphometric analysis, neuroanatomical tract‐tracing, and intracellular neuronal recording, we address this question...

      To what extent do modifications in the nervous system and peripheral effectors contribute to novel behaviors? Using a combination of morphometric analysis, neuroanatomical tract‐tracing, and intracellular neuronal recording, we address this question in a sound‐producing and a weakly electric species of synodontid catfish, Synodontis grandiops, and Synodontis nigriventris, respectively. The same peripheral mechanism, a bilateral pair of protractor muscles associated with vertebral processes (elastic spring mechanism), is involved in both signaling systems. Although there were dramatic species differences in several morphometric measures, electromyograms provided strong evidence that simultaneous activation of paired protractor muscles accounts for an individual sound and electric discharge pulse. While the general architecture of the neural network and the intrinsic properties of the motoneuron population driving each target was largely similar, differences could contribute to species‐specific patterns in electromyograms and the associated pulse repetition rate of sounds and electric discharges. Together, the results suggest that adaptive changes in both peripheral and central characters underlie the transition from an ancestral sound to a derived electric discharge producing system, and thus the evolution of a novel communication channel among synodontid catfish. Similarities with characters in other sonic and weakly electric teleost fish provide a striking example of convergent evolution in functional adaptations underlying the evolution of the two signaling systems among distantly related taxa.
      Synodontid catfishes use an Elastic Spring Apparatus, including protractor muscles, to produce electric discharges or sounds. Anatomical characterization, together with motoneuron patch‐clamp recordings and protractor muscle EMGs suggest that adaptive changes in peripheral and central characters underlie the transition from an ancestral sound to a derived electric discharge producing system.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼