RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      제빵 개량제에 따른 식빵의 텍스처 예측을 위한 인공지능 모델 최적화 = Optimization of an Artificial Intelligence Model for Predicting the Texture of Bread With Different Baking Enhancers

      한글로보기

      https://www.riss.kr/link?id=A109078315

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This research presented the procedural framework of developing and optimizing an artificial intelligence model for predicting the change of bread texture by different baking enhancers. Emphasis was placed on the impact of various baking enhancers on the Mixolab thermo-mechanical properties of wheat flour and consequent alterations in bread texture. The application of baking enhancers positively contributed to dough formation and stability, producing bread with a soft texture. However, a relatively low Pearson correlation coefficient was observed between a single Mixolab parameter and bread texture (r<0.59). To more ac curately predict the texture of bread from the thermo-mechanical features of wheat flour with baking enhancers, five AI models (multiple linear regression, decision tree, stochastic gradient descent, random forest, and multilayer perceptron neural network) were applied, and their prediction performance was compared. The multilayer perceptron neural network model was further utilized to enhance the prediction of bread texture by mitigating overfitting risks. Finally, the hyperparameter tuning (activa tion function [Leaky ReLU], regularization [0.0001], and dropout [0.1]) led to enhanced model performance (R2 = 0.8109 and RMSE = 0.1096).
      번역하기

      This research presented the procedural framework of developing and optimizing an artificial intelligence model for predicting the change of bread texture by different baking enhancers. Emphasis was placed on the impact of various baking enhancers on t...

      This research presented the procedural framework of developing and optimizing an artificial intelligence model for predicting the change of bread texture by different baking enhancers. Emphasis was placed on the impact of various baking enhancers on the Mixolab thermo-mechanical properties of wheat flour and consequent alterations in bread texture. The application of baking enhancers positively contributed to dough formation and stability, producing bread with a soft texture. However, a relatively low Pearson correlation coefficient was observed between a single Mixolab parameter and bread texture (r<0.59). To more ac curately predict the texture of bread from the thermo-mechanical features of wheat flour with baking enhancers, five AI models (multiple linear regression, decision tree, stochastic gradient descent, random forest, and multilayer perceptron neural network) were applied, and their prediction performance was compared. The multilayer perceptron neural network model was further utilized to enhance the prediction of bread texture by mitigating overfitting risks. Finally, the hyperparameter tuning (activa tion function [Leaky ReLU], regularization [0.0001], and dropout [0.1]) led to enhanced model performance (R2 = 0.8109 and RMSE = 0.1096).

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼