RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Biological conversion of methane to methanol

      한글로보기

      https://www.riss.kr/link?id=A104465496

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The conversion of methane to methanol is important to economic utilization of natural/shale gas. Methanol is a valuable liquid fuel and raw material for various synthetic hydrocarbon products. Its industrial production is currently based on a two-step...

      The conversion of methane to methanol is important to economic utilization of natural/shale gas. Methanol is a valuable liquid fuel and raw material for various synthetic hydrocarbon products. Its industrial production is currently based on a two-step process that is energy-intensive and environmentally unfriendly, requiring high pressure and temperature. The biological oxidation of methane to methanol, based on methane monooxygenase activity of methanotrophic bacteria, is desirable because the oxidation is highly selective under mild conditions, but conversion rate and yield and stability of catalytic activity should be improved up to an industrially viable level. Since methanotrophic bacteria produce methanol as only a precursor of formaldehyde that is then used to synthesize various essential metabolites,the direct use of bacteria seems unsuitable for selective production of a large amount of methanol. There are two types of methane monooxygenase: soluble (sMMO) and particulate (pMMO) enzyme. sMMO consisting of three components (reductase, hydroxylase, and regulatory protein) features an (αβγ)2 dimer architecture with a di-iron active site in hydroxlase. pMMO, a trimer (pmoA, pmoB, and pmoC) in an α3β3γ3 polypeptide arrangement is a copper enzyme with a di-copper active site located in the soluble domain of pmoB subunit. Since the membrane transports electrons well and delivers effectively methane with increased solubility in the lipid bilayer, pMMO seems more rationally designed enzyme in nature than sMMO. The engineering/evolution/modification of MMO enzymes using various biological and chemical techniques could lead to an optimal way to reach the ultimate goal of technically and economically feasible and environmentally friendly oxidation of methane. For this, multidisciplinary efforts from chemical engineering,protein engineering, and bioprocess research sectors should be systematically combined.

      더보기

      참고문헌 (Reference)

      1 R. A. Periana, 259 : 340-, 1993

      2 M.A. Culpepper, 47 : 483-, 2012

      3 M. Khoshtinat, 38 : 354-, 2010

      4 G. A. Olah, 44 : 2636-, 2005

      5 J.W.M. H. Geerts, 6 : 613-, 1990

      6 A. E. Shilov, 97 : 2879-, 1997

      7 N. R. Hunter, 57 : 45-, 1990

      8 G. S. Walker, 21 : 519-, 1994

      9 T. J. Hall, 42 : 151-, 1995

      10 S. H. Taylor, 42 : 217-, 1998

      1 R. A. Periana, 259 : 340-, 1993

      2 M.A. Culpepper, 47 : 483-, 2012

      3 M. Khoshtinat, 38 : 354-, 2010

      4 G. A. Olah, 44 : 2636-, 2005

      5 J.W.M. H. Geerts, 6 : 613-, 1990

      6 A. E. Shilov, 97 : 2879-, 1997

      7 N. R. Hunter, 57 : 45-, 1990

      8 G. S. Walker, 21 : 519-, 1994

      9 T. J. Hall, 42 : 151-, 1995

      10 S. H. Taylor, 42 : 217-, 1998

      11 O. Benlounes, 17 : 309-, 2008

      12 C. Hammond, 51 : 5129-, 2012

      13 M.H.A. Rahim, 52 : 1280-, 2013

      14 C. J. Jones, 116 : 4726-, 2004

      15 H. D. Gesser, 85 : 235-, 1985

      16 S. S. Bharadwaj, 42 : 109-, 1995

      17 N. R. Foster, 19 : 1-, 1985

      18 Q. Zhang, 17 : 24-, 2008

      19 Q. Zhang, 12 : 81-, 2003

      20 R. Palkovits, 48 : 6909-, 2009

      21 P. S. Casey, 33 : 1120-, 1994

      22 L.M. Zhou, 18 : 375-, 1998

      23 L. Chen, 48 : 1333-, 2009

      24 D.W. Larkin, 40 : 5496-, 2001

      25 R. L. Lieberman, 39 : 147-, 2004

      26 R. Whittenbury, 61 : 205-, 1970

      27 R. S. Hanson, 60 : 439-, 1996

      28 S. N. Dedysh, 282 : 281-, 1998

      29 V. N. Khmelenina, 35 : 257-, 1997

      30 D.Y. Sorokin, 4 : 145-, 2000

      31 L. Bodrossy, 170 : 335-, 1999

      32 J. P. Bowman, 143 : 1451-, 1997

      33 S. Vuilleumier, 194 : 551-, 2012

      34 L.Y. Stein, 192 : 6497-, 2010

      35 A. Miyaji, 495 : 211-, 2011

      36 B. Gilbert, 66 : 966-, 2000

      37 L.Y. Stein, 193 : 2668-, 2011

      38 I.R. McDonald, 63 : 1898-, 1997

      39 Y. Chen, 192 : 3840-, 2010

      40 N. Ward, 2 : 1617-, 2004

      41 J. Colby, 165 : 395-, 1977

      42 M. Merkx, 40 : 2782-, 2001

      43 R. Balasubramanian, 40 : 573-, 2007

      44 A. S. Hakemian, 76 : 223-, 2007

      45 A. K. Nielsen, 142 : 1289-, 1996

      46 R. N. Patel, 44 : 1130-, 1982

      47 J. Green, 260 : 15795-, 1985

      48 B.G. Fox, 264 : 10023-, 1989

      49 S. Friedle, 39 : 2768-, 2010

      50 C. E. Tinberg, 44 : 280-, 2011

      51 S. M. Smith, 50 : 10231-, 2011

      52 R. Balasubramanian, 465 : 115-, 2010

      53 P. F. Dunfield, 450 : 879-, 2007

      54 M. R. Hyman, 212 : 31-, 1983

      55 C. Scheutz, 27 : 409-, 2009

      56 Y. Jiang, 1163 : 105-, 1993

      57 Y. Jiang, 1201 : 76-, 1994

      58 T. Yoshimoto, 6 : 337-, 1984

      59 Y. Inada, 131 : 532-, 1984

      60 K. Takahashi, 131 : 532-, 1985

      61 A. Matsushima, 178 : 275-, 1984

      62 H. F. Gaertner, 3 : 130-, 1988

      63 M.-T. Babonneau, 30 : 2787-, 1989

      64 C. Pina, 3 : 333-, 1989

      65 H. F. Gaertner, 181 : 207-, 1989

      66 G. Ljunger, 7 : 279-, 1993

      67 A. Abuchowski, 578 : 41-, 1979

      68 A. Ferjancic, 10 : 101-, 1988

      69 H. Lee, 10 : 407-, 1988

      70 J. Souppe, 957 : 254-, 1988

      71 J. Souppe, 12 : 503-, 1989

      72 K. Takahashi, 125 : 761-, 1984

      73 K. Takahashi, 121 : 261-, 1984

      74 K. Takahashi, 6 : 765-, 1984

      75 M. Urrutigoity, 2 : 145-, 1989

      76 P. Wirth, 19 : 133-, 1991

      77 T. Yoshimoto, 148 : 876-, 1987

      78 A. Glieder, 20 : 1135-, 2002

      79 S. J. Lee, 494 : 380-, 2013

      80 D.W. Choi, 151 : 3417-, 2005

      81 S. S.-F. Yu, 185 : 5915-, 2003

      82 Z. Gou, 263 : 136-, 2006

      83 "BP Statistical Review of World Energy" 2012

      84 J. J. Conti, "Annual Energy Outlook 2012" U.S. Energy Information Administration 2012

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2016-06-21 학술지명변경 한글명 : The Korean Journal of Chemical Engineering -> Korean Journal of Chemical Engineering
      외국어명 : The Korean Journal of Chemical Engineering -> Korean Journal of Chemical Engineering
      KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-09-27 학회명변경 영문명 : The Korean Institute Of Chemical Engineers -> The Korean Institute of Chemical Engineers KCI등재
      2007-09-03 학술지명변경 한글명 : The Korean Journal of Chemical Engineeri -> The Korean Journal of Chemical Engineering
      외국어명 : The Korean Journal of Chemical Engineeri -> The Korean Journal of Chemical Engineering
      KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.92 0.72 1.4
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      1.15 0.94 0.403 0.14
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼