RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Moduli Space of Timwe-like Pseudo Circles in R13

      한글로보기

      https://www.riss.kr/link?id=A102129256

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      It is of great importance to classify all kinds of hypersurface in different space forms. In this paper, we focus on the hypersurfaces foliated by time-like pseudo circles. In order to complete the classification, we study the moduli space 23 of time-...

      It is of great importance to classify all kinds of hypersurface in different space forms. In this paper, we focus on the hypersurfaces foliated by time-like pseudo circles. In order to complete the classification, we study the moduli space 23 of time-like pseudo circles in 13. Firstly, We build the moduli space 23 of time-like pseudo circles in 13 which is definitely a Riemannian manifold. Secondly, we build Riemannian metric, Riemannian connections in 23 and prove that those are M̈bius invariant. Thirdly, up to M̈bius transformation, all the geodesics in 23 are determined to form a one-parameter family of time-like pseudo circles on a generalized helicoid in space form 13(1), 13(−1),13(0), resp. Moreover, we show that mean curvature of those hypersurfaces are zero in three space forms respectively. Finally by software Mathematica and Jreality, we show some special hypersurfaces foliated by time-like pseudo circles.

      더보기

      목차 (Table of Contents)

      • Abstract
      • 1. Introduction
      • 2. Moduli Space of Time-like Pseudo Circles in 3
      • 3. Geodesics on Moduli Space 3
      • 3.1. {′(),′()} are Linearly Dependent
      • Abstract
      • 1. Introduction
      • 2. Moduli Space of Time-like Pseudo Circles in 3
      • 3. Geodesics on Moduli Space 3
      • 3.1. {′(),′()} are Linearly Dependent
      • 3.2. {′(),′()} are Linearly Independent
      • Acknowledgment
      • References
      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼