In this paper, static and oscillatory instability of a nanotube conveying fluid and modelled as a thin-walled beam is investigated. Analytically nonlocal effect, effects of boundary conditions, transverse shear and rotary inertia are incorporated in t...
In this paper, static and oscillatory instability of a nanotube conveying fluid and modelled as a thin-walled beam is investigated. Analytically nonlocal effect, effects of boundary conditions, transverse shear and rotary inertia are incorporated in this study. The governing equations and the two different boundary conditions are derived through Hamiltons principle. Numerical analysis is performed by using extend Galerkin method which enables us to obtain more exact solutions compared with conventional Galerkin method. Variations of critical flow velocity for different boundary conditions of a nanotube with analytically nonlocal effect, partially nonlocal effect and local effect of a nanotube are investigated and pertinent conclusion is outlined.