RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS SCIE

      Removal of naphthalene from simulated wastewater through adsorption-photodegradation by ZnO/Ag/GO nanocomposite

      한글로보기

      https://www.riss.kr/link?id=A106829818

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this study, a ZnO/Ag/GO nanocomposite was synthesised and used as photocatalyst for effectivephotodegradation of naphthalene from simulated wastewater under visible light. Chemical andmorphological characterisation were successfully done using XRD,...

      In this study, a ZnO/Ag/GO nanocomposite was synthesised and used as photocatalyst for effectivephotodegradation of naphthalene from simulated wastewater under visible light. Chemical andmorphological characterisation were successfully done using XRD, PL, UV–vis, FTIR, XPS, FESEM andHRTEM analytical tools. Photocatalytic degradation experiments werefirst carried out under darkconditions and then under visible-light irradiation. Adsorption study of naphthalene prior tophotocatalysis using synthesised material was thoroughly done by studying the kinetics and adsorptionisotherm models. All as-synthesised materials (ZnO nanoparticles, binary ZnO/Ag, and ternary ZnO/Ag/GO nanocomposites) followed pseudo-second-order kinetics and the Freundlich adsorption isotherm,confirming the adsorption on hetero-structural surface. ZnO/Ag/GO could successfully adsorb 80%naphthalene in 20 min, with 500 mg.g 1 adsorption capacity. High adsorption of naphthalene moleculeson ZnO/Ag/GO surfaces trigger improved photodegradation efficiency upon light irradiation. Incorporationof plasmonic Ag nanoparticles and 2D graphene oxide (GO) to ZnO semiconductor improved thephotocatalytic degradation efficiency of naphthalene, achieving up to 92% degradation in 50 min. Thephotodegradation of naphthalene follows the Langmuir-Hinshelwood kinetics model and was foundacceptable to express the photodegradation rate. Furthermore, the ZnO/Ag/GO photocatalyst could easilybe recycled and reused forfive cycles, maintaining up to 85% of its photodegradation efficiency.

      더보기

      참고문헌 (Reference)

      1 V. Kumar, 101 : 57-, 2013

      2 A. Prakash, 24 : 095705-, 2013

      3 V. Sridhar, 5 : 68270-, 2015

      4 P. Wang, 230 : 477-, 2016

      5 W. Ai, 22 : 23439-, 2012

      6 Md Rakibuddina, 40 : 3385-, 2016

      7 I. Langmuir, 40 : 1361-, 1918

      8 N. Kumar, 2019

      9 H. Mittal, 62 : 370-, 2013

      10 A. Leudjo Taka, 25 (25): 21752-, 2018

      1 V. Kumar, 101 : 57-, 2013

      2 A. Prakash, 24 : 095705-, 2013

      3 V. Sridhar, 5 : 68270-, 2015

      4 P. Wang, 230 : 477-, 2016

      5 W. Ai, 22 : 23439-, 2012

      6 Md Rakibuddina, 40 : 3385-, 2016

      7 I. Langmuir, 40 : 1361-, 1918

      8 N. Kumar, 2019

      9 H. Mittal, 62 : 370-, 2013

      10 A. Leudjo Taka, 25 (25): 21752-, 2018

      11 A. Eslami, 53 : 2536-, 2018

      12 M. Malekzadeh, 32 : e4434-, 2018

      13 M. Ghaedi, 6 : 54322-, 2016

      14 E. I. Osagie, 5 : 345-, 2015

      15 S. M. Yakout, 34 : 293-, 2013

      16 M. E. Ossman, 51 : 3472-, 2013

      17 C. B. Vidal, 357 : 466-, 2011

      18 B. Cabal, 161 : 1150-, 2009

      19 R. S. Araújo, 108 : 213-, 2008

      20 N. Daneshvar, 162 : 317-, 2003

      21 W. Mei, 20 : 286-, 2018

      22 J. Zhu, 10 : 3480-, 2014

      23 Y. Xiao, 41 : 10087-, 2015

      24 J. Zhang, 6 : 181779-, 2019

      25 V. Mahmoodi, 52 : 6664-, 2014

      26 D. Liu, 676 : 489-, 2016

      27 N. Mukwevho, 163 : 286-, 2019

      28 C. Pérez, 42 : 707-, 2008

      29 N. Vela, 232 : 32-, 2012

      30 G. Ramdine, 79 : 80-, 2012

      31 L. K. Siddens, 264 : 377-, 2012

      32 N. Pajaro-Castro, 14 : 667-, 2017

      33 V. M. Nikoli"c, 312 : 99-, 2017

      34 N. Mukwevho, 1-, 2019

      35 A. T. Massey, 55 : 7124-, 2016

      36 N. Kumar, 6 : 17011-, 2018

      37 X. Zhang, 2019

      38 Y. Choi, 51 : 3973-, 2017

      39 S. Esplugas, 36 : 1034-, 2002

      40 N. Kumar, 41 : 14618-, 2017

      41 I. K. Konstantinou, 49 : 1-, 2004

      42 R. Daghrir, 52 : 3581-, 2013

      43 A. A. Khodja, 141 : 231-, 2001

      44 N. Kumar, 5 : 38801-, 2014

      45 C. A. Jaramillo-Páez, 313 : 12-, 2018

      46 R. Georgekutty, 112 : 13563-, 2008

      47 P. She, 499 : 76-, 2017

      48 X. Zhou, 22 : 21337-, 2012

      49 Y. I. Choi, 356 : 615-, 2015

      50 Y. Yang, 180 : 97-, 2016

      51 X. Zhang, 391 : 476-, 2017

      52 S. Verma, 47 : 12673-, 2011

      53 M. J. Allen, 110 : 132-, 2010

      54 R. Gusain, 181 : 352-, 2016

      55 K. Ravichandran, 43 : 10041-, 2017

      56 F. Xu, 48 : 2066-, 2013

      57 P. Dou, 302 : 17-, 2015

      58 D. H. Yoo, 116 : 7180-, 2012

      59 C. Nethravathi, 46 : 1994-, 2008

      60 Z. B. Yu, 1 : 2773-, 2013

      61 R. K. Biroju, 122 : 044302-, 2017

      62 K. Vanheusden, 79 : 7983-, 1996

      63 W. I. Park, 82 : 964-, 2003

      64 P. L. Provenzano, 92 : 297-, 2001

      65 C. P. Sibu, 14 : 2876-, 2002

      66 H. Liu, 1 : 3739-, 2013

      67 K. M. Wong, 3 : 4830-, 2011

      68 S. Kohtani, 58 : 265-, 2005

      69 S. Xia, 176 : 266-277, 2015

      70 X. Yang, 334 : 355-, 2018

      71 B. P. A. George, 8 : 14368-, 2018

      72 K. V. Kumar, 9 : 82-, 2008

      73 M.A. Callahan, "Water-Related Environmental Fate of 129 Priority Pollutants" U.S. Environmental Protection Agency 1979

      74 E. Fosso-Kankeu, "Water Purification" Academic Press, Elsevier 323-, 2017

      75 E. Fosso-Kankeu, "Thermodynamic properties and adsorption behaviour of hydrogel nanocomposites for cadmium removal from mine effluents" 한국공업화학회 48 : 151-161, 2017

      76 J. M. Neff, "Polycyclic Aromatic Hydrocarbons in the Aquatic Environment" Applied Science Publishers 1979

      77 H. Zangeneh, "Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review" 한국공업화학회 26 : 1-36, 2015

      78 E. Fosso-Kankeu, "Gum ghatti and acrylic acid based biodegradable hydrogels for the effective adsorption of cationic dyes" 한국공업화학회 22 : 171-178, 2015

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2003-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2001-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 3.4 0.75 2.84
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      2.39 2.24 0.397 0.56
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼