RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCI SCIE SCOPUS

      Influence of Hydrogen Absorption on Stacking Fault of Energy of a Face-Centered Cubic High Entropy Alloy

      한글로보기

      https://www.riss.kr/link?id=A108329669

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Hydrogen-induced variation of stacking fault energy (SFE) of a CrMnFeCoNi high-entropy alloy (HEA) was quantitativelyevaluated by transmission electron microscopy (TEM) using weak-beam dark-field (WBDF) technique. Width of Shockleypartial dislocations...

      Hydrogen-induced variation of stacking fault energy (SFE) of a CrMnFeCoNi high-entropy alloy (HEA) was quantitativelyevaluated by transmission electron microscopy (TEM) using weak-beam dark-field (WBDF) technique. Width of Shockleypartial dislocations turned out to increase after hydrogen absorption, which indicates that hydrogen decreases the SFE ofthe alloy: from 31.5 ± 3.5 to 22.5 ± 2.5 mJm−2 by introduction of hydrogen into the lattice with approximate concentrationof 115 wppm. This report provides the first direct observation of stacking faults under the influence of hydrogen in a facecenteredcubic metallic structure.

      더보기

      참고문헌 (Reference) 논문관계도

      1 고석우 ; 이지민 ; 황병철, "페라이트-펄라이트 조직 저탄소강의 수소 취성에 미치는 Nb 첨가와 예비 변형의 영향" 대한금속·재료학회 58 (58): 752-758, 2020

      2 Adriana Estela Pontini, "X-Ray diffraction measurement of the stacking fault energy reduction induced by hydrogen in an AISI 304 steel" Elsevier BV 37 (37): 1831-1837, 1997

      3 Young Jin Kwon, "Ultrahigh-strength CoCrFeMnNi high-entropy alloy wire rod with excellent resistance to hydrogen embrittlement" Elsevier BV 732 : 105-111, 2018

      4 M. B. Whiteman, "The Influence of Hydrogen on the Stacking Fault Energy of an Austenitic Stainless Steel" Wiley 7 (7): K109-K110, 1964

      5 Shuo Huang, "Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy" Elsevier BV 108 : 44-47, 2015

      6 G. Laplanche, "Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy" Elsevier BV 623 : 348-353, 2015

      7 Z. Wu, "Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures" Elsevier BV 81 : 428-441, 2014

      8 L. Remy, "Temperature dependence of stacking fault energy in close-packed metals and alloys" 36 : 47-63, 1978

      9 Z. Pu, "Strong resistance to hydrogen embrittlement of high-entropy alloy" Elsevier BV 736 : 156-166, 2018

      10 S.F. Liu, "Stacking fault energy of face-centered-cubic high entropy alloys" Elsevier BV 93 : 269-273, 2018

      1 고석우 ; 이지민 ; 황병철, "페라이트-펄라이트 조직 저탄소강의 수소 취성에 미치는 Nb 첨가와 예비 변형의 영향" 대한금속·재료학회 58 (58): 752-758, 2020

      2 Adriana Estela Pontini, "X-Ray diffraction measurement of the stacking fault energy reduction induced by hydrogen in an AISI 304 steel" Elsevier BV 37 (37): 1831-1837, 1997

      3 Young Jin Kwon, "Ultrahigh-strength CoCrFeMnNi high-entropy alloy wire rod with excellent resistance to hydrogen embrittlement" Elsevier BV 732 : 105-111, 2018

      4 M. B. Whiteman, "The Influence of Hydrogen on the Stacking Fault Energy of an Austenitic Stainless Steel" Wiley 7 (7): K109-K110, 1964

      5 Shuo Huang, "Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy" Elsevier BV 108 : 44-47, 2015

      6 G. Laplanche, "Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy" Elsevier BV 623 : 348-353, 2015

      7 Z. Wu, "Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures" Elsevier BV 81 : 428-441, 2014

      8 L. Remy, "Temperature dependence of stacking fault energy in close-packed metals and alloys" 36 : 47-63, 1978

      9 Z. Pu, "Strong resistance to hydrogen embrittlement of high-entropy alloy" Elsevier BV 736 : 156-166, 2018

      10 S.F. Liu, "Stacking fault energy of face-centered-cubic high entropy alloys" Elsevier BV 93 : 269-273, 2018

      11 R. E. Schramm, "Stacking fault energies of seven commercial austenitic stainless steels" Springer Science and Business Media LLC 6 (6): 1345-1351, 1975

      12 Zhoucan Xie, "Sluggish hydrogen diffusion and hydrogen decreasing stacking fault energy in a high-entropy alloy" Elsevier BV 26 : 101902-, 2021

      13 Norihiko L. Okamoto, "Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy" Springer Science and Business Media LLC 6 (6): 2016

      14 Junghoon Lee ; Hanji Park ; Myeonghyun Kim ; Han‑Jin Kim ; Jin‑yoo Suh ; Namhyun Kang, "Role of Hydrogen and Temperature in Hydrogen Embrittlement of Equimolar CoCrFeMnNi High-entropy Alloy" 대한금속·재료학회 27 (27): 166-174, 2021

      15 Yakai Zhao, "Resistance of CoCrFeMnNi high-entropy alloy to gaseous hydrogen embrittlement" Elsevier BV 135 : 54-58, 2017

      16 G. Laplanche, "Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi" Elsevier BV 128 : 292-303, 2017

      17 A. Haglund, "Polycrystalline elastic moduli of a high-entropy alloy at cryogenic temperatures" Elsevier BV 58 : 62-64, 2015

      18 C MARCHI, "Permeability, solubility and diffusivity of hydrogen isotopes in stainless steels at high gas pressures" Elsevier BV 32 (32): 100-116, 2007

      19 Hyung-Jun Cho, "Origin of deformation twins and their influence on hydrogen embrittlement in cold-rolled austenitic stainless steel" Elsevier BV 46 (46): 22195-22207, 2021

      20 J.-W. Yeh, "Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes" Wiley 6 (6): 299-303, 2004

      21 B. Cantor, "Microstructural development in equiatomic multicomponent alloys" Elsevier BV 375-377 : 213-218, 2004

      22 A. J. Zaddach, "Mechanical Properties and Stacking Fault Energies of NiFeCrCoMn High-Entropy Alloy" Springer Science and Business Media LLC 65 (65): 1780-1789, 2013

      23 Young-Hyun Nam, "Low-temperature tensile and impact properties of hydrogen-charged high-manganese steel" Elsevier BV 44 (44): 7000-7013, 2019

      24 Yakai Zhao, "Influences of hydrogen charging method on the hydrogen distribution and nanomechanical properties of face-centered cubic high-entropy alloy: A comparative study" Elsevier BV 168 : 76-80, 2019

      25 P.J. Ferreira, "Influence of Hydrogen on the Stacking-Fault Energy of an Austenitic Stainless Steel" Trans Tech Publications, Ltd. 207-209 : 93-96, 1996

      26 Yakai Zhao, "Hydrogen-induced nanohardness variations in a CoCrFeMnNi high-entropy alloy" Elsevier BV 42 (42): 12015-12021, 2017

      27 Han-Jin Kim, "Hydrogen-induced change in microstructure and properties of steels: 18Cr10Mn–0.4N vis-à-vis 18Cr10Ni" Informa UK Limited 34 (34): 584-586, 2017

      28 Z. Tarzimoghadam, "Hydrogen-assisted failure in Ni-based superalloy 718 studied under in situ hydrogen charging: The role of localized deformation in crack propagation" Elsevier BV 128 : 365-374, 2017

      29 George R. Caskey, "Hydrogen solubility in austenitic stainless steels" Elsevier BV 15 (15): 1187-1190, 1981

      30 Zhou-Can Xie, "Hydrogen induced slowdown of spallation in high entropy alloy under shock loading" Elsevier BV 139 : 102944-, 2021

      31 Hong Luo, "Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy" Springer Science and Business Media LLC 7 (7): 9892-, 2017

      32 M. Hatano, "Hydrogen embrittlement of austenitic stainless steels revealed by deformation microstructures and strain-induced creation of vacancies" Elsevier BV 67 : 342-353, 2014

      33 D. M. Symons, "Hydrogen embrittlement of Ni-Cr-Fe alloys" Springer Science and Business Media LLC 28 (28): 655-663, 1997

      34 M.P. Phaniraj, "Hydrogen embrittlement in high interstitial alloyed 18Cr10Mn austenitic stainless steels" Elsevier BV 40 (40): 13635-13642, 2015

      35 K.E. Nygren, "Hydrogen embrittlement in compositionally complex FeNiCoCrMn FCC solid solution alloy" Elsevier BV 22 (22): 1-7, 2018

      36 P.J. Ferreira, "Hydrogen effects on the character of dislocations in high-purity aluminum" Elsevier BV 47 (47): 2991-2998, 1999

      37 Motomichi Koyama, "Grain refinement effect on hydrogen embrittlement resistance of an equiatomic CoCrFeMnNi high-entropy alloy" Elsevier BV 44 (44): 17163-17167, 2019

      38 J.-E. Jin, "Effects of Al on microstructure and tensile properties of C-bearing high Mn TWIP steel" Elsevier BV 60 (60): 1680-1688, 2012

      39 Junghoon Lee, "Effective hydrogen diffusion coefficient for CoCrFeMnNi high-entropy alloy and microstructural behaviors after hydrogen permeation" Elsevier BV 45 (45): 10227-10232, 2020

      40 Sara Correa Marques, "Effect of alloying elements on the hydrogen diffusion and trapping in high entropy alloys" Elsevier BV 201 : 113957-, 2021

      41 Y.-K. Lee, "Critical assessment 19: stacking fault energies of austenitic steels" Informa UK Limited 32 (32): 1-8, 2016

      42 Tae-Ho Lee, "Correlation between stacking fault energy and deformation microstructure in high-interstitial-alloyed austenitic steels" Elsevier BV 58 (58): 3173-3186, 2010

      43 Kenshiro Ichii, "Comparative study of hydrogen embrittlement in stable and metastable high-entropy alloys" Elsevier BV 150 : 74-77, 2018

      44 Il Yoo, "Comparative Study of Hydrogen Embrittlement of Three Heat-resistant Cr-Mo Steels Subjected to Electrochemical and Gaseous Hydrogen Charging" Springer Science and Business Media LLC 51 (51): 2118-2125, 2020

      45 Hong Luo, "Beating hydrogen with its own weapon: Nano-twin gradients enhance embrittlement resistance of a high-entropy alloy" Elsevier BV 21 (21): 1003-1009, 2018

      46 Hong Luo, "A strong and ductile medium-entropy alloy resists hydrogen embrittlement and corrosion" Springer Science and Business Media LLC 11 (11): 1-8, 2020

      47 S. Jani, "A mechanistic study of transgranular stress corrosion cracking of type 304 stainless steel" Springer Science and Business Media LLC 22 (22): 1453-1461, 1991

      48 Bernd Gludovatz, "A fracture-resistant high-entropy alloy for cryogenic applications" American Association for the Advancement of Science (AAAS) 345 (345): 1153-1158, 2014

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼